Scalable Constant-Time Logical Gates for Large-Scale Quantum Computation Using Window-Based Correlated Decoding
- URL: http://arxiv.org/abs/2410.16963v2
- Date: Thu, 02 Jan 2025 09:04:06 GMT
- Title: Scalable Constant-Time Logical Gates for Large-Scale Quantum Computation Using Window-Based Correlated Decoding
- Authors: Jiaxuan Zhang, Zhao-Yun Chen, Jia-Ning Li, Tian-Hao Wei, Huan-Yu Liu, Xi-Ning Zhuang, Qing-Song Li, Yu-Chun Wu, Guo-Ping Guo,
- Abstract summary: A crucial challenge of fault-tolerant quantum computing is reducing the overhead of implementing logical gates.
We propose an architecture that employs delayed fixup circuits and window-based correlated decoding.
This design significantly reduces both the frequency and duration of decoding, while maintaining support for constant-time and universal logical gates.
- Score: 11.657137510701165
- License:
- Abstract: Large-scale quantum computation requires to be performed in the fault-tolerant manner. One crucial challenge of fault-tolerant quantum computing (FTQC) is reducing the overhead of implementing logical gates. Recently work proposed correlated decoding and ``algorithmic fault tolerance" to achieve constant-time logical gates that enables universal quantum computation. However, for circuits involving mid-circuit measurements and feedback, the previous scheme for constant-time logical gates is incompatible with window-based decoding, which is a scalable approach for handling large-scale circuits. In this work, we propose an architecture that employs delayed fixup circuits and window-based correlated decoding, realizing scalable constant-time logical gates. This design significantly reduces both the frequency and duration of decoding, while maintaining support for constant-time and universal logical gates across a broad class of quantum codes. More importantly, by spatial parallelism of windows, this architecture well adapts to time-optimal FTQC, making it particularly useful for large-scale quantum computation. Using Shor's algorithm as an example, we explore the application of our architecture and reveals the promising potential of using constant-time logical gates to perform large-scale quantum computation with acceptable overhead on physical systems like ion traps.
Related papers
- Polylog-time- and constant-space-overhead fault-tolerant quantum computation with quantum low-density parity-check codes [2.048226951354646]
A major challenge in fault-tolerant quantum computation is to reduce both space overhead and time overhead.
We show that a protocol using non-vanishing-rate quantum low-density parity-check codes achieves constant space overhead and polylogarithmic time overhead.
arXiv Detail & Related papers (2024-11-06T06:06:36Z) - Efficient fault-tolerant code switching via one-way transversal CNOT gates [0.0]
We present a code scheme that respects the constraints of FT circuit design by only making use of switching gates.
We analyze application of the scheme to low-distance color codes, which are suitable for operation in existing quantum processors.
We discuss how the scheme can be implemented with a large degree of parallelization, provided that logical auxiliary qubits can be prepared reliably enough.
arXiv Detail & Related papers (2024-09-20T12:54:47Z) - Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
We show that fault-tolerant logical operations can be performed with constant time overhead for a broad class of quantum codes.
We prove that the deviation from the ideal measurement result distribution can be made exponentially small in the code distance.
Our work sheds new light on the theory of fault tolerance, potentially reducing the space-time cost of practical fault-tolerant quantum computation by orders of magnitude.
arXiv Detail & Related papers (2024-06-25T15:43:25Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Correlated decoding of logical algorithms with transversal gates [3.8093449003779667]
We show that logical algorithms can be substantially improved by decoding qubits jointly to account for physical error propagation during entangling gates.
By considering deep logical Clifford circuits, we find that correlated decoding can significantly improve the space-time cost by reducing the number of rounds of noisy syndrome extraction per gate.
arXiv Detail & Related papers (2024-03-05T19:13:32Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Logical blocks for fault-tolerant topological quantum computation [55.41644538483948]
We present a framework for universal fault-tolerant logic motivated by the need for platform-independent logical gate definitions.
We explore novel schemes for universal logic that improve resource overheads.
Motivated by the favorable logical error rates for boundaryless computation, we introduce a novel computational scheme.
arXiv Detail & Related papers (2021-12-22T19:00:03Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.