SG-FSM: A Self-Guiding Zero-Shot Prompting Paradigm for Multi-Hop Question Answering Based on Finite State Machine
- URL: http://arxiv.org/abs/2410.17021v1
- Date: Tue, 22 Oct 2024 13:47:38 GMT
- Title: SG-FSM: A Self-Guiding Zero-Shot Prompting Paradigm for Multi-Hop Question Answering Based on Finite State Machine
- Authors: Xiaochen Wang, Junqing He, Liang Chen, Reza Haf Zhe Yang, Yiru Wang, Xiangdi Meng, Kunhao Pan, Zhifang Sui,
- Abstract summary: Multi-hop Question Answering (MHQA) remains challenging for many existing models.
We propose the Self-Guiding prompting Finite State Machine (SG-FSM) to strengthen multi-hop reasoning abilities.
- Score: 27.274219226254026
- License:
- Abstract: Large Language Models with chain-of-thought prompting, such as OpenAI-o1, have shown impressive capabilities in natural language inference tasks. However, Multi-hop Question Answering (MHQA) remains challenging for many existing models due to issues like hallucination, error propagation, and limited context length. To address these challenges and enhance LLMs' performance on MHQA, we propose the Self-Guiding prompting Finite State Machine (SG-FSM), designed to strengthen multi-hop reasoning abilities. Unlike traditional chain-of-thought methods, SG-FSM tackles MHQA by iteratively breaking down complex questions into sub-questions, correcting itself to improve accuracy. It processes one sub-question at a time, dynamically deciding the next step based on the current context and results, functioning much like an automaton. Experiments across various benchmarks demonstrate the effectiveness of our approach, outperforming strong baselines on challenging datasets such as Musique. SG-FSM reduces hallucination, enabling recovery of the correct final answer despite intermediate errors. It also improves adherence to specified output formats, simplifying evaluation significantly.
Related papers
- Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.
We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.
Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - Zero-Shot Multi-Hop Question Answering via Monte-Carlo Tree Search with Large Language Models [19.214387260667348]
This paper introduces Monte-Carlo tree search for Zero-shot multi-hop Question Answering (MZQA), a framework based on Monte-Carlo tree search (MCTS)
Unlike previous works, we propose a zero-shot prompting method, which relies solely on instructions without the support of hand-crafted few-shot examples that typically require domain expertise.
We also introduce a behavioral cloning approach (MZQA-BC) trained on self-generated MCTS inference trajectories, achieving an over 10-fold increase in reasoning speed with bare compromise in performance.
arXiv Detail & Related papers (2024-09-28T15:13:04Z) - FSM: A Finite State Machine Based Zero-Shot Prompting Paradigm for Multi-Hop Question Answering [26.398873686905063]
Large Language Models (LLMs) with chain-of-thought (COT) prompting have demonstrated impressive abilities on simple nature language inference tasks.
We propose a prompting method, Finite State Machine (FSM) to enhance the reasoning capabilities of LLM for complex tasks.
arXiv Detail & Related papers (2024-07-03T10:01:01Z) - On the Worst Prompt Performance of Large Language Models [93.13542053835542]
Performance of large language models (LLMs) is acutely sensitive to the phrasing of prompts.
We introduce RobustAlpacaEval, a new benchmark that consists of semantically equivalent case-level queries.
Experiments on RobustAlpacaEval with ChatGPT and six open-source LLMs from the Llama, Mistral, and Gemma families uncover substantial variability in model performance.
arXiv Detail & Related papers (2024-06-08T13:40:38Z) - Self-prompted Chain-of-Thought on Large Language Models for Open-domain
Multi-hop Reasoning [70.74928578278957]
In open-domain question-answering (ODQA), most existing questions require single-hop reasoning on commonsense.
Large language models (LLMs) have found significant utility in facilitating ODQA without external corpus.
We propose Self-prompted Chain-of-Thought (SP-CoT), an automated framework to mass-produce high quality CoTs.
arXiv Detail & Related papers (2023-10-20T14:51:10Z) - Performance Prediction for Multi-hop Questions [7.388002745070808]
We propose multHP, a novel pre-retrieval method for predicting the performance of open-domain multi-hop questions.
Our evaluation shows that the proposed model is a strong predictor of the performance, outperforming traditional single-hop QPP models.
arXiv Detail & Related papers (2023-08-12T01:34:41Z) - Enhancing Chain-of-Thoughts Prompting with Iterative Bootstrapping in Large Language Models [81.01397924280612]
Large language models (LLMs) can achieve highly effective performance on various reasoning tasks by incorporating step-by-step chain-of-thought (CoT) prompting as demonstrations.
We introduce Iter-CoT (Iterative bootstrapping in Chain-of-Thoughts Prompting), an iterative bootstrapping approach for selecting exemplars and generating reasoning chains.
arXiv Detail & Related papers (2023-04-23T13:54:39Z) - Rethinking Label Smoothing on Multi-hop Question Answering [87.68071401870283]
Multi-Hop Question Answering (MHQA) is a significant area in question answering.
In this work, we analyze the primary factors limiting the performance of multi-hop reasoning.
We propose a novel label smoothing technique, F1 Smoothing, which incorporates uncertainty into the learning process.
arXiv Detail & Related papers (2022-12-19T14:48:08Z) - Modeling Multi-hop Question Answering as Single Sequence Prediction [88.72621430714985]
We propose a simple generative approach (PathFid) that extends the task beyond just answer generation.
PathFid explicitly models the reasoning process to resolve the answer for multi-hop questions.
Our experiments demonstrate that PathFid leads to strong performance gains on two multi-hop QA datasets.
arXiv Detail & Related papers (2022-05-18T21:57:59Z) - KECP: Knowledge Enhanced Contrastive Prompting for Few-shot Extractive
Question Answering [28.18555591429343]
We propose a novel framework named Knowledge Enhanced Contrastive Prompt-tuning (KECP)
Instead of adding pointer heads to PLMs, we transform the task into a non-autoregressive Masked Language Modeling (MLM) generation problem.
Our method consistently outperforms state-of-the-art approaches in few-shot settings by a large margin.
arXiv Detail & Related papers (2022-05-06T08:31:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.