論文の概要: Deep Memory Search: A Metaheuristic Approach for Optimizing Heuristic Search
- arxiv url: http://arxiv.org/abs/2410.17042v1
- Date: Tue, 22 Oct 2024 14:16:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:29:53.154753
- Title: Deep Memory Search: A Metaheuristic Approach for Optimizing Heuristic Search
- Title(参考訳): Deep Memory Search: ヒューリスティック検索を最適化するためのメタヒューリスティックアプローチ
- Authors: Abdel-Rahman Hedar, Alaa E. Abdel-Hakim, Wael Deabes, Youseef Alotaibi, Kheir Eddine Bouazza,
- Abstract要約: 本稿では,メタヒューリスティック検索をメモリ駆動プロセスとしてモデル化するDeep Heuristic Search (DHS) という新しい手法を提案する。
DHSは複数の探索層とメモリベースの探索探索機構を用いて、大きな動的探索空間をナビゲートする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Metaheuristic search methods have proven to be essential tools for tackling complex optimization challenges, but their full potential is often constrained by conventional algorithmic frameworks. In this paper, we introduce a novel approach called Deep Heuristic Search (DHS), which models metaheuristic search as a memory-driven process. DHS employs multiple search layers and memory-based exploration-exploitation mechanisms to navigate large, dynamic search spaces. By utilizing model-free memory representations, DHS enhances the ability to traverse temporal trajectories without relying on probabilistic transition models. The proposed method demonstrates significant improvements in search efficiency and performance across a range of heuristic optimization problems.
- Abstract(参考訳): メタヒューリスティック探索法は複雑な最適化問題に対処するための重要なツールであることが証明されているが、その潜在能力は従来のアルゴリズムフレームワークによって制限されることが多い。
本稿では,メタヒューリスティック検索をメモリ駆動プロセスとしてモデル化するDeep Heuristic Search (DHS) という新しい手法を提案する。
DHSは複数の探索層とメモリベースの探索探索機構を用いて、大きな動的探索空間をナビゲートする。
モデルフリーなメモリ表現を利用することで、DHSは確率的遷移モデルに頼ることなく、時間的軌跡をトラバースする能力を向上させる。
提案手法は,多様なヒューリスティック最適化問題に対して,探索効率と性能の大幅な向上を示す。
関連論文リスト
- MGAS: Multi-Granularity Architecture Search for Trade-Off Between Model
Effectiveness and Efficiency [10.641875933652647]
我々は,多粒度アーキテクチャサーチ(MGAS)を導入し,効率的かつ効率的なニューラルネットワークを探索する。
各粒度レベル固有の離散化関数を学習し、進化したアーキテクチャに従って単位残率を適応的に決定する。
CIFAR-10、CIFAR-100、ImageNetの大規模な実験により、MGASはモデル性能とモデルサイズとのトレードオフを改善するために、他の最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-23T16:32:18Z) - HomOpt: A Homotopy-Based Hyperparameter Optimization Method [10.11271414863925]
一般化加法モデル(GAM)とホモトピー最適化を組み合わせたデータ駆動型手法であるHomOptを提案する。
本稿では,HomOptが任意のメソッドの性能と有効性を向上し,連続離散およびカテゴリー領域空間上での最適収束を高速化する方法について述べる。
論文 参考訳(メタデータ) (2023-08-07T06:01:50Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
興味のあるタスクを直接検索できる,スケーラブルで汎用的なフレームワークを初めて提示する。
基礎となる数学表現の自然木構造に着想を得て、空間を超木に再配置する。
我々は,モンテカルロ法を木探索に適用し,レジェクションサンプリングと等価形状検出を備える。
論文 参考訳(メタデータ) (2022-09-27T17:51:31Z) - CorpusBrain: Pre-train a Generative Retrieval Model for
Knowledge-Intensive Language Tasks [62.22920673080208]
単一ステップ生成モデルは、検索プロセスを劇的に単純化し、エンドツーエンドで最適化することができる。
我々は、事前学習された生成検索モデルをCorpsBrainと名付け、コーパスに関する全ての情報が、追加のインデックスを構築することなく、そのパラメータにエンコードされる。
論文 参考訳(メタデータ) (2022-08-16T10:22:49Z) - Efficient Joint-Dimensional Search with Solution Space Regularization
for Real-Time Semantic Segmentation [27.94898516315886]
この問題に対して,リアルタイムに実行可能な最適ネットワーク構造を探索する。
新たな解空間規則化(SSR)損失は、スーパーネットが離散的に収束することを効果的に促すために最初に提案される。
より高効率な探索を実現するために,新しい階層的・プログレッシブ・ソリューション・スペース・スライキング法を提案する。
論文 参考訳(メタデータ) (2022-08-10T11:07:33Z) - Transfer Learning based Search Space Design for Hyperparameter Tuning [31.96809688536572]
過去のタスクから履歴をチューニングする助けを借りてBO検索空間を設計する自動手法を提案する。
このシンプルで効果的なアプローチは、多くの既存のBOメソッドに伝達学習機能を持たせるために使用できる。
論文 参考訳(メタデータ) (2022-06-06T11:48:58Z) - An Asymptotically Optimal Multi-Armed Bandit Algorithm and
Hyperparameter Optimization [48.5614138038673]
本稿では,高パラメータ探索評価のシナリオにおいて,SS (Sub-Sampling) と呼ばれる効率的で堅牢な帯域幅に基づくアルゴリズムを提案する。
また,BOSSと呼ばれる新しいパラメータ最適化アルゴリズムを開発した。
実験的な研究は、SSの理論的議論を検証し、多くのアプリケーションにおけるBOSSの優れた性能を実証する。
論文 参考訳(メタデータ) (2020-07-11T03:15:21Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
外乱検出は重要なデータマイニングの課題であり、多くの実用的応用がある。
本稿では,最適なニューラルネットワークモデルを探すことを目的とした自動外乱検出フレームワークであるAutoODを提案する。
さまざまな実世界のベンチマークデータセットに対する実験結果から、AutoODが特定したディープモデルが最高のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2020-06-19T18:57:51Z) - DrNAS: Dirichlet Neural Architecture Search [88.56953713817545]
ディリクレ分布をモデルとした連続緩和型混合重みをランダム変数として扱う。
最近開発されたパスワイズ微分により、ディリクレパラメータは勾配に基づく一般化で容易に最適化できる。
微分可能なNASの大きなメモリ消費を軽減するために, 単純かつ効果的な進行学習方式を提案する。
論文 参考訳(メタデータ) (2020-06-18T08:23:02Z) - Efficient Model-Based Reinforcement Learning through Optimistic Policy
Search and Planning [93.1435980666675]
最先端の強化学習アルゴリズムと楽観的な探索を容易に組み合わせることができることを示す。
我々の実験は、楽観的な探索が行動に罰則がある場合、学習を著しくスピードアップすることを示した。
論文 参考訳(メタデータ) (2020-06-15T18:37:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。