Adaptive Reward Design for Reinforcement Learning in Complex Robotic Tasks
- URL: http://arxiv.org/abs/2412.10917v1
- Date: Sat, 14 Dec 2024 18:04:18 GMT
- Title: Adaptive Reward Design for Reinforcement Learning in Complex Robotic Tasks
- Authors: Minjae Kwon, Ingy ElSayed-Aly, Lu Feng,
- Abstract summary: We propose a suite of reward functions that incentivize an RL agent to make measurable progress on tasks specified by formulas.
We develop an adaptive reward shaping approach that dynamically updates these reward functions during the learning process.
Experimental results on a range of RL-based robotic tasks demonstrate that the proposed approach is compatible with various RL algorithms.
- Score: 2.3031174164121127
- License:
- Abstract: There is a surge of interest in using formal languages such as Linear Temporal Logic (LTL) and finite automata to precisely and succinctly specify complex tasks and derive reward functions for reinforcement learning (RL) in robotic applications. However, existing methods often assign sparse rewards (e.g., giving a reward of 1 only if a task is completed and 0 otherwise), necessitating extensive exploration to converge to a high-quality policy. To address this limitation, we propose a suite of reward functions that incentivize an RL agent to make measurable progress on tasks specified by LTL formulas and develop an adaptive reward shaping approach that dynamically updates these reward functions during the learning process. Experimental results on a range of RL-based robotic tasks demonstrate that the proposed approach is compatible with various RL algorithms and consistently outperforms baselines, achieving earlier convergence to better policies with higher task success rates and returns.
Related papers
- Exploring RL-based LLM Training for Formal Language Tasks with Programmed Rewards [49.7719149179179]
This paper investigates the feasibility of using PPO for reinforcement learning (RL) from explicitly programmed reward signals.
We focus on tasks expressed through formal languages, such as programming, where explicit reward functions can be programmed to automatically assess quality of generated outputs.
Our results show that pure RL-based training for the two formal language tasks is challenging, with success being limited even for the simple arithmetic task.
arXiv Detail & Related papers (2024-10-22T15:59:58Z) - Stage-Wise Reward Shaping for Acrobatic Robots: A Constrained Multi-Objective Reinforcement Learning Approach [12.132416927711036]
We introduce an RL method aimed at simplifying the reward-shaping process through intuitive strategies.
We define multiple reward and cost functions within a constrained multi-objective RL (CMORL) framework.
For tasks involving sequential complex movements, we segment the task into distinct stages and define multiple rewards and costs for each stage.
arXiv Detail & Related papers (2024-09-24T05:25:24Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Logical Specifications-guided Dynamic Task Sampling for Reinforcement Learning Agents [9.529492371336286]
Reinforcement Learning (RL) has made significant strides in enabling artificial agents to learn diverse behaviors.
We propose a novel approach, called Logical Specifications-guided Dynamic Task Sampling (LSTS)
LSTS learns a set of RL policies to guide an agent from an initial state to a goal state based on a high-level task specification.
arXiv Detail & Related papers (2024-02-06T04:00:21Z) - Language Reward Modulation for Pretraining Reinforcement Learning [61.76572261146311]
We propose leveraging the capabilities of LRFs as a pretraining signal for reinforcement learning.
Our VLM pretraining approach, which is a departure from previous attempts to use LRFs, can warmstart sample-efficient learning on robot manipulation tasks.
arXiv Detail & Related papers (2023-08-23T17:37:51Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Reinforcement Learning Agent Training with Goals for Real World Tasks [3.747737951407512]
Reinforcement Learning (RL) is a promising approach for solving various control, optimization, and sequential decision making tasks.
We propose a specification language (Inkling Goal Specification) for complex control and optimization tasks.
We include a set of experiments showing that the proposed method provides great ease of use to specify a wide range of real world tasks.
arXiv Detail & Related papers (2021-07-21T23:21:16Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
Reinforcement learning (RL) offers a more flexible solution by allowing users to plug in arbitrary task metrics as reward.
We introduce a new RL formulation for text generation from the soft Q-learning perspective.
We apply the approach to a wide range of tasks, including learning from noisy/negative examples, adversarial attacks, and prompt generation.
arXiv Detail & Related papers (2021-06-14T18:48:40Z) - Active Finite Reward Automaton Inference and Reinforcement Learning
Using Queries and Counterexamples [31.31937554018045]
Deep reinforcement learning (RL) methods require intensive data from the exploration of the environment to achieve satisfactory performance.
We propose a framework that enables an RL agent to reason over its exploration process and distill high-level knowledge for effectively guiding its future explorations.
Specifically, we propose a novel RL algorithm that learns high-level knowledge in the form of a finite reward automaton by using the L* learning algorithm.
arXiv Detail & Related papers (2020-06-28T21:13:08Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
We propose a model-free RL algorithm that enables the use of Linear Temporal Logic (LTL) to formulate a goal for unknown continuous-state/action Markov Decision Processes (MDPs)
The algorithm is guaranteed to synthesise a control policy whose traces satisfy the specification with maximal probability.
arXiv Detail & Related papers (2019-02-02T20:09:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.