Layered LA-MAPF: a decomposition of large agent MAPF instance to accelerate solving without compromising solvability
- URL: http://arxiv.org/abs/2410.17160v1
- Date: Tue, 22 Oct 2024 16:34:24 GMT
- Title: Layered LA-MAPF: a decomposition of large agent MAPF instance to accelerate solving without compromising solvability
- Authors: Zhuo Yao,
- Abstract summary: Multi-Agent Path Finding (MAPF) has been widely studied in recent years.
Most existing MAPF algorithms assume that an agent occupies only a single grid in a grid-based map.
We introduce textbfLayered LA-MAPF, a method that decomposes a MAPF instance involving geometric agents into clusters.
- Score: 0.0
- License:
- Abstract: Multi-Agent Path Finding (MAPF) has been widely studied in recent years. However, most existing MAPF algorithms assume that an agent occupies only a single grid in a grid-based map. This assumption limits their applicability in many real-world domains where agents have geometric shapes, rather than being point-like. Such agents, which can occupy multiple cells simultaneously, are referred to as ``large'' agents. When considering the shape and size of agents in MAPF, the computational complexity increases significantly as the number of agents grows, primarily due to the increased overhead in conflict detection between geometric agents. In this paper, we propose two types of subproblems for the LA-MAPF (Large-Agent MAPF) problem: \textbf{cluster} (which has no constraints on the order of solution) and \textbf{level} (which imposes constraints on the solution order). We introduce \textbf{Layered LA-MAPF}, a method that decomposes a MAPF instance involving geometric agents into clusters, and then further decomposes each cluster into levels. This approach aims to reduce time complexity when solving LA-MAPF problems. Our results demonstrate the performance of our method as the number of agents increases across various maps, and how it accelerates LA-MAPF methods, such as LA-CBS and LA-LaCAM. Experiments show that our LA-MAPF method with instance decomposition \textbf{halves the time cost (reducing from an average of 40s to 20s) and triples the success rate (from an average of 0.27 to 0.80)} in finding a solution within 60 seconds. To facilitate further research, we have made the source code for Layered LA-MAPF publicly available at \url{https://github.com/JoeYao-bit/LayeredMAPF/algorithm/LA-MAPF}.
Related papers
- MAPF-GPT: Imitation Learning for Multi-Agent Pathfinding at Scale [46.35418789518417]
Multi-agent pathfinding is a challenging computational problem that typically requires to find collision-free paths for multiple agents in a shared environment.
We have created a foundation model for the MAPF problems called MAPF-GPT.
Using imitation learning, we have trained a policy on a set of sub-optimal expert trajectories that can generate actions in conditions of partial observability.
We show that MAPF-GPT notably outperforms the current best-performing learnable-MAPF solvers on a diverse range of problem instances.
arXiv Detail & Related papers (2024-08-29T12:55:10Z) - Scalable Mechanism Design for Multi-Agent Path Finding [87.40027406028425]
Multi-Agent Path Finding (MAPF) involves determining paths for multiple agents to travel simultaneously and collision-free through a shared area toward given goal locations.
Finding an optimal solution is often computationally infeasible, making the use of approximate, suboptimal algorithms essential.
We introduce the problem of scalable mechanism design for MAPF and propose three strategyproof mechanisms, two of which even use approximate MAPF algorithms.
arXiv Detail & Related papers (2024-01-30T14:26:04Z) - Decentralized Monte Carlo Tree Search for Partially Observable
Multi-agent Pathfinding [49.730902939565986]
Multi-Agent Pathfinding problem involves finding a set of conflict-free paths for a group of agents confined to a graph.
In this study, we focus on the decentralized MAPF setting, where the agents may observe the other agents only locally.
We propose a decentralized multi-agent Monte Carlo Tree Search (MCTS) method for MAPF tasks.
arXiv Detail & Related papers (2023-12-26T06:57:22Z) - Traffic Flow Optimisation for Lifelong Multi-Agent Path Finding [29.76466191644455]
Multi-Agent Path Finding (MAPF) is a fundamental problem in robotics that asks us to compute collision-free paths for a team of agents.
We propose a new approach for MAPF where agents are guided to their destination by following congestion-avoiding paths.
We evaluate the idea in two large-scale settings: one-shot MAPF, where each agent has a single destination, and lifelong MAPF, where agents are continuously assigned new destinations.
arXiv Detail & Related papers (2023-08-22T07:17:39Z) - Monte-Carlo Tree Search for Multi-Agent Pathfinding: Preliminary Results [60.4817465598352]
We introduce an original variant of Monte-Carlo Tree Search (MCTS) tailored to multi-agent pathfinding.
Specifically, we use individual paths to assist the agents with the the goal-reaching behavior.
We also use a dedicated decomposition technique to reduce the branching factor of the tree search procedure.
arXiv Detail & Related papers (2023-07-25T12:33:53Z) - Factorization of Multi-Agent Sampling-Based Motion Planning [72.42734061131569]
Modern robotics often involves multiple embodied agents operating within a shared environment.
Standard sampling-based algorithms can be used to search for solutions in the robots' joint space.
We integrate the concept of factorization into sampling-based algorithms, which requires only minimal modifications to existing methods.
We present a general implementation of a factorized SBA, derive an analytical gain in terms of sample complexity for PRM*, and showcase empirical results for RRG.
arXiv Detail & Related papers (2023-04-01T15:50:18Z) - Leveraging Experience in Lifelong Multi-Agent Pathfinding [12.401344261399613]
In Lifelong Multi-Agent Path Finding (L-MAPF) a team of agents performs a stream of tasks while avoiding collisions with one another.
We introduce a new RHCR-inspired approach called exRHCR, which exploits experience in its constituent MAPF queries.
ExRHCR solves L-MAPF up to 25% faster than RHCR, and allows to increase throughput for given task streams by as much as 3%-16%.
arXiv Detail & Related papers (2022-02-09T10:41:35Z) - Subdimensional Expansion Using Attention-Based Learning For Multi-Agent
Path Finding [9.2127262112464]
Multi-Agent Path Finding (MAPF) finds conflict-free paths for multiple agents from their respective start to goal locations.
We develop a novel multi-agent planner called LM* by integrating this learning-based single-agent planner with M*.
Our results show that for both "seen" and "unseen" maps, in comparison with M*, LM* has fewer conflicts to be resolved and thus, runs faster and enjoys higher success rates.
arXiv Detail & Related papers (2021-09-29T20:01:04Z) - The Surprising Effectiveness of MAPPO in Cooperative, Multi-Agent Games [67.47961797770249]
Multi-Agent PPO (MAPPO) is a multi-agent PPO variant which adopts a centralized value function.
We show that MAPPO achieves performance comparable to the state-of-the-art in three popular multi-agent testbeds.
arXiv Detail & Related papers (2021-03-02T18:59:56Z) - Lifelong Multi-Agent Path Finding in Large-Scale Warehouses [26.017429163961328]
Multi-Agent Path Finding (MAPF) is the problem of moving a team of agents to their goal locations without collisions.
We propose a new framework for solving lifelong MAPF by decomposing the problem into a sequence of Windowed MAPF instances.
arXiv Detail & Related papers (2020-05-15T06:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.