論文の概要: Context-aware Prompt Tuning: Advancing In-Context Learning with Adversarial Methods
- arxiv url: http://arxiv.org/abs/2410.17222v1
- Date: Tue, 22 Oct 2024 17:45:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:25:37.166665
- Title: Context-aware Prompt Tuning: Advancing In-Context Learning with Adversarial Methods
- Title(参考訳): 文脈認識型プロンプトチューニング:逆法による文脈学習の促進
- Authors: Tsachi Blau, Moshe Kimhi, Yonatan Belinkov, Alexander Bronstein, Chaim Baskin,
- Abstract要約: In this work introduced Context-aware Prompt Tuning (CPT) - ICL, PT, and adversarial attack。
入力および出力フォーマットのユニークな構造を考慮して、特定のコンテキストトークンを変更する。
敵の攻撃にインスパイアされた我々は、損失を最大化するのではなく、最小化に焦点をあてて、コンテキストに存在するラベルに基づいて入力を調整する。
- 参考スコア(独自算出の注目度): 69.36397993451742
- License:
- Abstract: Fine-tuning Large Language Models (LLMs) typically involves updating at least a few billions of parameters. A more parameter-efficient approach is Prompt Tuning (PT), which updates only a few learnable tokens, and differently, In-Context Learning (ICL) adapts the model to a new task by simply including examples in the input without any training. When applying optimization-based methods, such as fine-tuning and PT for few-shot learning, the model is specifically adapted to the small set of training examples, whereas ICL leaves the model unchanged. This distinction makes traditional learning methods more prone to overfitting; in contrast, ICL is less sensitive to the few-shot scenario. While ICL is not prone to overfitting, it does not fully extract the information that exists in the training examples. This work introduces Context-aware Prompt Tuning (CPT), a method inspired by ICL, PT, and adversarial attacks. We build on the ICL strategy of concatenating examples before the input, but we extend this by PT-like learning, refining the context embedding through iterative optimization to extract deeper insights from the training examples. We carefully modify specific context tokens, considering the unique structure of input and output formats. Inspired by adversarial attacks, we adjust the input based on the labels present in the context, focusing on minimizing, rather than maximizing, the loss. Moreover, we apply a projected gradient descent algorithm to keep token embeddings close to their original values, under the assumption that the user-provided data is inherently valuable. Our method has been shown to achieve superior accuracy across multiple classification tasks using various LLM models.
- Abstract(参考訳): 微調整大型言語モデル(LLM)は通常、少なくとも数十億のパラメータを更新する。
よりパラメータ効率のよいアプローチは、数個の学習可能なトークンだけを更新するPrompt Tuning(PT)である。
微調整やPTなどの最適化ベースの手法を数ショットの学習に適用する場合、ICLはモデルをそのまま残すのに対して、モデルは訓練例の小さなセットに特化している。
この区別により、従来の学習手法は過度に適合する傾向が強くなり、対照的にICLは少数ショットのシナリオに敏感でない。
ICLは過度に適合する傾向があるが、トレーニング例に存在する情報を完全に抽出するわけではない。
In this work introduced Context-aware Prompt Tuning (CPT) - ICL, PT, and adversarial attack。
我々は、入力の前に例を連結するICL戦略に基づいて構築するが、PTライクな学習によってこれを拡張し、反復最適化を通じてコンテキストを埋め込んで、トレーニング例から深い洞察を抽出する。
入力および出力フォーマットのユニークな構造を考慮して、特定のコンテキストトークンを慎重に修正する。
敵の攻撃にインスパイアされた我々は、損失を最大化するのではなく、最小化に焦点をあてて、コンテキストに存在するラベルに基づいて入力を調整する。
さらに、ユーザが提供するデータが本質的に価値があるという仮定の下で、トークンの埋め込みを元の値に近く保つために、予測勾配降下アルゴリズムを適用した。
提案手法は,複数の分類タスクにおいて,様々なLLMモデルを用いて高い精度を達成できることが示されている。
関連論文リスト
- Context-Parametric Inversion: Why Instruction Finetuning May Not Actually Improve Context Reliance [68.56701216210617]
In-principleでは、モデルが命令の微調整後にユーザコンテキストに適応することを期待する。
インストラクションチューニング中、知識の衝突によるコンテキスト依存は、当初期待通りに増大するが、徐々に減少する。
論文 参考訳(メタデータ) (2024-10-14T17:57:09Z) - Deeper Insights Without Updates: The Power of In-Context Learning Over Fine-Tuning [22.341935761925892]
ファインチューニングとインコンテキスト学習(ICL)は、タスク固有の知識で大きな言語モデルを出力する2つの一般的な方法である。
暗黙的なパターンを持つタスクに対して、ICLはこれらのパターンを微調整よりもはるかによくキャプチャする。
論文 参考訳(メタデータ) (2024-10-07T02:12:22Z) - "In-Context Learning" or: How I learned to stop worrying and love "Applied Information Retrieval" [9.264121218481133]
In-context Learning (ICL)は、自然言語処理(NLP)の新しいパラダイムとして進化してきた。
ICLは概念的には$k$-NNのような非パラメトリックアプローチに似ている。
トレーニングセットから取得したICLの同様の例は、IRのコレクションから取得したドキュメントのセットに関連している。
論文 参考訳(メタデータ) (2024-05-02T09:25:24Z) - How Does In-Context Learning Help Prompt Tuning? [55.78535874154915]
微調整された大きな言語モデルは、急速に拡大するスケールのために、ますます実用的ではないものになりつつある。
これはプロンプトチューニング(PT)のようなパラメータ効率のよい適応手法の使用を動機付け、凍ったモデルに少数のチューナブルな埋め込みを追加する。
近年,Singhalら (2022) はPTとICLを組み合わせた命令プロンプトチューニング (IPT) を提案している。
論文 参考訳(メタデータ) (2023-02-22T17:45:12Z) - Improving Few-Shot Performance of Language Models via Nearest Neighbor
Calibration [12.334422701057674]
In-context Learning のための近辺校正フレームワークを提案する。
インコンテキスト学習パラダイムは、トレーニングインスタンスを推論する際に誤ったラベルを生成するという現象にインスパイアされている。
テキスト分類タスクの多種多様な実験により,本手法はテキスト内学習を大幅に改善することが示された。
論文 参考訳(メタデータ) (2022-12-05T12:49:41Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
ICL (Few-shot in-context Learning) は、予測を行うたびにトレーニング例を全て処理するので、かなりの計算、メモリ、ストレージコストを発生させる。
パラメータ効率の良い微調整は、モデルの新たなタスクの実行を可能にするために、小さなパラメータセットをトレーニングする、代替パラダイムを提供する。
本稿では,少数ショットICLとパラメータ効率の微調整を厳密に比較し,後者が計算コストを劇的に削減できることを示す。
論文 参考訳(メタデータ) (2022-05-11T17:10:41Z) - Clinical Prompt Learning with Frozen Language Models [4.077071350659386]
大規模だが凍結した事前学習言語モデル (PLMs) は、より小型で微調整されたモデルよりも高速に学習できる。
臨床的に有意な意思決定課題における即時学習の実現可能性について検討した。
結果は、学習の速さと部分的に一致しており、学習の速さは従来の微調整と一致したり改善したりすることができる。
論文 参考訳(メタデータ) (2022-05-11T14:25:13Z) - Meta-learning via Language Model In-context Tuning [16.306733033119897]
メタラーニングの目標は、いくつかのラベル付き例で新しいタスクに適応することを学ぶことだ。
適応と予測をリキャストする$textitin-context tuningを提案する。
LAMAとBinaryClfsの2種類のテキスト分類タスクについて,本手法のベンチマークを行った。
論文 参考訳(メタデータ) (2021-10-15T02:29:09Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
原型コントラスト学習(Prototypeal Contrastive Learning, PCL)は、教師なし表現学習法である。
PCLは暗黙的にデータのセマンティック構造を学習された埋め込み空間にエンコードする。
PCLは、複数のベンチマークで最先端のインスタンスワイド・コントラスト学習法より優れている。
論文 参考訳(メタデータ) (2020-05-11T09:53:36Z) - Pre-training Text Representations as Meta Learning [113.3361289756749]
本稿では,下流タスクを効果的に学習するために,モデルがテキスト表現を学習する能力を直接最適化する学習アルゴリズムを提案する。
マルチタスク事前学習とモデル非依存型メタラーニングの間には,一連のメタトレインステップによる本質的な関係があることが示されている。
論文 参考訳(メタデータ) (2020-04-12T09:05:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。