Fine-Tuning Large Language Models to Appropriately Abstain with Semantic Entropy
- URL: http://arxiv.org/abs/2410.17234v1
- Date: Tue, 22 Oct 2024 17:54:03 GMT
- Title: Fine-Tuning Large Language Models to Appropriately Abstain with Semantic Entropy
- Authors: Benedict Aaron Tjandra, Muhammed Razzak, Jannik Kossen, Kunal Handa, Yarin Gal,
- Abstract summary: Large Language Models (LLMs) are known to hallucinate, whereby they generate plausible but inaccurate text.
This phenomenon poses significant risks in critical applications, such as medicine or law, necessitating robust hallucination mitigation strategies.
We propose fine-tuning using semantic entropy, an uncertainty measure derived from introspection into the model which does not require external labels.
- Score: 31.05551799523973
- License:
- Abstract: Large Language Models (LLMs) are known to hallucinate, whereby they generate plausible but inaccurate text. This phenomenon poses significant risks in critical applications, such as medicine or law, necessitating robust hallucination mitigation strategies. While recent works have proposed fine-tuning methods to teach LLMs to abstain from answering questions beyond their knowledge or capabilities, these methods rely on the existence of ground-truth labels or are limited to short-form responses. To address these limitations, we propose fine-tuning using semantic entropy, an uncertainty measure derived from introspection into the model which does not require external labels. We demonstrate that our approach matches or outperforms models fine-tuned using prior work and achieves strong performance for both short and long-form generations on a range of datasets.
Related papers
- LoGU: Long-form Generation with Uncertainty Expressions [49.76417603761989]
We introduce the task of Long-form Generation with Uncertainty(LoGU)
We identify two key challenges: Uncertainty Suppression and Uncertainty Misalignment.
Our framework adopts a divide-and-conquer strategy, refining uncertainty based on atomic claims.
Experiments on three long-form instruction following datasets show that our method significantly improves accuracy, reduces hallucinations, and maintains the comprehensiveness of responses.
arXiv Detail & Related papers (2024-10-18T09:15:35Z) - Zero-to-Strong Generalization: Eliciting Strong Capabilities of Large Language Models Iteratively without Gold Labels [75.77877889764073]
Large Language Models (LLMs) have demonstrated remarkable performance through supervised fine-tuning or in-context learning using gold labels.
This study explores whether solely utilizing unlabeled data can elicit strong model capabilities.
We propose a new paradigm termed zero-to-strong generalization.
arXiv Detail & Related papers (2024-09-19T02:59:44Z) - Enhancing adversarial robustness in Natural Language Inference using explanations [41.46494686136601]
We cast the spotlight on the underexplored task of Natural Language Inference (NLI)
We validate the usage of natural language explanation as a model-agnostic defence strategy through extensive experimentation.
We research the correlation of widely used language generation metrics with human perception, in order for them to serve as a proxy towards robust NLI models.
arXiv Detail & Related papers (2024-09-11T17:09:49Z) - Semantic Entropy Probes: Robust and Cheap Hallucination Detection in LLMs [32.901839335074676]
Hallucinations present a major challenge to the practical adoption of Large Language Models.
Recent work by Farquhar et al. (2024) proposes semantic entropy (SE), which can detect hallucinations by estimating uncertainty in the space semantic meaning for a set of model generations.
We propose SEPs, which directly approximate SE from the hidden states of a single generation.
arXiv Detail & Related papers (2024-06-22T19:46:06Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - Semantic Density: Uncertainty Quantification for Large Language Models through Confidence Measurement in Semantic Space [14.715989394285238]
Existing Large Language Models (LLMs) do not have an inherent functionality to provide the users with an uncertainty/confidence metric for each response it generates.
A new framework is proposed in this paper to address these issues.
Semantic density extracts uncertainty/confidence information for each response from a probability distribution perspective in semantic space.
arXiv Detail & Related papers (2024-05-22T17:13:49Z) - Understanding Privacy Risks of Embeddings Induced by Large Language Models [75.96257812857554]
Large language models show early signs of artificial general intelligence but struggle with hallucinations.
One promising solution is to store external knowledge as embeddings, aiding LLMs in retrieval-augmented generation.
Recent studies experimentally showed that the original text can be partially reconstructed from text embeddings by pre-trained language models.
arXiv Detail & Related papers (2024-04-25T13:10:48Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
In-context learning has emerged as a groundbreaking ability of Large Language Models (LLMs)
We propose a novel formulation and corresponding estimation method to quantify both types of uncertainties.
The proposed method offers an unsupervised way to understand the prediction of in-context learning in a plug-and-play fashion.
arXiv Detail & Related papers (2024-02-15T18:46:24Z) - Gaining Wisdom from Setbacks: Aligning Large Language Models via Mistake
Analysis [127.85293480405082]
The rapid development of large language models (LLMs) has not only provided numerous opportunities but also presented significant challenges.
Existing alignment methods usually direct LLMs toward the favorable outcomes by utilizing human-annotated, flawless instruction-response pairs.
This study proposes a novel alignment technique based on mistake analysis, which deliberately exposes LLMs to erroneous content to learn the reasons for mistakes and how to avoid them.
arXiv Detail & Related papers (2023-10-16T14:59:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.