LoGU: Long-form Generation with Uncertainty Expressions
- URL: http://arxiv.org/abs/2410.14309v2
- Date: Thu, 24 Oct 2024 18:26:39 GMT
- Title: LoGU: Long-form Generation with Uncertainty Expressions
- Authors: Ruihan Yang, Caiqi Zhang, Zhisong Zhang, Xinting Huang, Sen Yang, Nigel Collier, Dong Yu, Deqing Yang,
- Abstract summary: We introduce the task of Long-form Generation with Uncertainty(LoGU)
We identify two key challenges: Uncertainty Suppression and Uncertainty Misalignment.
Our framework adopts a divide-and-conquer strategy, refining uncertainty based on atomic claims.
Experiments on three long-form instruction following datasets show that our method significantly improves accuracy, reduces hallucinations, and maintains the comprehensiveness of responses.
- Score: 49.76417603761989
- License:
- Abstract: While Large Language Models (LLMs) demonstrate impressive capabilities, they still struggle with generating factually incorrect content (i.e., hallucinations). A promising approach to mitigate this issue is enabling models to express uncertainty when unsure. Previous research on uncertainty modeling has primarily focused on short-form QA, but realworld applications often require much longer responses. In this work, we introduce the task of Long-form Generation with Uncertainty(LoGU). We identify two key challenges: Uncertainty Suppression, where models hesitate to express uncertainty, and Uncertainty Misalignment, where models convey uncertainty inaccurately. To tackle these challenges, we propose a refinement-based data collection framework and a two-stage training pipeline. Our framework adopts a divide-and-conquer strategy, refining uncertainty based on atomic claims. The collected data are then used in training through supervised fine-tuning (SFT) and direct preference optimization (DPO) to enhance uncertainty expression. Extensive experiments on three long-form instruction following datasets show that our method significantly improves accuracy, reduces hallucinations, and maintains the comprehensiveness of responses.
Related papers
- Fine-Tuning Large Language Models to Appropriately Abstain with Semantic Entropy [31.05551799523973]
Large Language Models (LLMs) are known to hallucinate, whereby they generate plausible but inaccurate text.
This phenomenon poses significant risks in critical applications, such as medicine or law, necessitating robust hallucination mitigation strategies.
We propose fine-tuning using semantic entropy, an uncertainty measure derived from introspection into the model which does not require external labels.
arXiv Detail & Related papers (2024-10-22T17:54:03Z) - UncertaintyRAG: Span-Level Uncertainty Enhanced Long-Context Modeling for Retrieval-Augmented Generation [93.38604803625294]
We present UncertaintyRAG, a novel approach for long-context Retrieval-Augmented Generation (RAG)
We use Signal-to-Noise Ratio (SNR)-based span uncertainty to estimate similarity between text chunks.
UncertaintyRAG outperforms baselines by 2.03% on LLaMA-2-7B, achieving state-of-the-art results.
arXiv Detail & Related papers (2024-10-03T17:39:38Z) - Unconditional Truthfulness: Learning Conditional Dependency for Uncertainty Quantification of Large Language Models [96.43562963756975]
We train a regression model, which target variable is the gap between the conditional and the unconditional generation confidence.
We use this learned conditional dependency model to modulate the uncertainty of the current generation step based on the uncertainty of the previous step.
arXiv Detail & Related papers (2024-08-20T09:42:26Z) - Uncertainty Estimation of Large Language Models in Medical Question Answering [60.72223137560633]
Large Language Models (LLMs) show promise for natural language generation in healthcare, but risk hallucinating factually incorrect information.
We benchmark popular uncertainty estimation (UE) methods with different model sizes on medical question-answering datasets.
Our results show that current approaches generally perform poorly in this domain, highlighting the challenge of UE for medical applications.
arXiv Detail & Related papers (2024-07-11T16:51:33Z) - Deterministic Uncertainty Propagation for Improved Model-Based Offline Reinforcement Learning [12.490614705930676]
Current approaches to model-based offline Reinforcement Learning (RL) often incorporate uncertainty-based reward penalization.
We argue that this penalization introduces excessive conservatism, potentially resulting in suboptimal policies through underestimation.
We identify as an important cause of over-penalization the lack of a reliable uncertainty estimator capable of propagating uncertainties in the Bellman operator.
arXiv Detail & Related papers (2024-06-06T13:58:41Z) - Spurious Feature Eraser: Stabilizing Test-Time Adaptation for Vision-Language Foundation Model [86.9619638550683]
Vision-language foundation models have exhibited remarkable success across a multitude of downstream tasks due to their scalability on extensive image-text paired data.
However, these models display significant limitations when applied to downstream tasks, such as fine-grained image classification, as a result of decision shortcuts''
arXiv Detail & Related papers (2024-03-01T09:01:53Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
Large-scale language models often face the challenge of "hallucination"
We introduce an uncertainty-aware in-context learning framework to empower the model to enhance or reject its output in response to uncertainty.
arXiv Detail & Related papers (2023-10-07T12:06:53Z) - Discretization-Induced Dirichlet Posterior for Robust Uncertainty
Quantification on Regression [17.49026509916207]
Uncertainty quantification is critical for deploying deep neural networks (DNNs) in real-world applications.
For vision regression tasks, current AuxUE designs are mainly adopted for aleatoric uncertainty estimates.
We propose a generalized AuxUE scheme for more robust uncertainty quantification on regression tasks.
arXiv Detail & Related papers (2023-08-17T15:54:11Z) - ALUM: Adversarial Data Uncertainty Modeling from Latent Model
Uncertainty Compensation [25.67258563807856]
We propose a novel method called ALUM to handle the model uncertainty and data uncertainty in a unified scheme.
Our proposed ALUM is model-agnostic which can be easily implemented into any existing deep model with little extra overhead.
arXiv Detail & Related papers (2023-03-29T17:24:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.