SELA: Tree-Search Enhanced LLM Agents for Automated Machine Learning
- URL: http://arxiv.org/abs/2410.17238v1
- Date: Tue, 22 Oct 2024 17:56:08 GMT
- Title: SELA: Tree-Search Enhanced LLM Agents for Automated Machine Learning
- Authors: Yizhou Chi, Yizhang Lin, Sirui Hong, Duyi Pan, Yaying Fei, Guanghao Mei, Bangbang Liu, Tianqi Pang, Jacky Kwok, Ceyao Zhang, Bang Liu, Chenglin Wu,
- Abstract summary: Tree-Search Enhanced LLM Agents (SELA) is an agent-based system that leverages Monte Carlo Tree Search (MCTS) to optimize the AutoML process.
SELA represents pipeline configurations as trees, enabling agents to conduct experiments intelligently and iteratively refine their strategies.
In an extensive evaluation across 20 machine learning datasets, we compare the performance of traditional and agent-based AutoML methods.
- Score: 14.702694298483445
- License:
- Abstract: Automated Machine Learning (AutoML) approaches encompass traditional methods that optimize fixed pipelines for model selection and ensembling, as well as newer LLM-based frameworks that autonomously build pipelines. While LLM-based agents have shown promise in automating machine learning tasks, they often generate low-diversity and suboptimal code, even after multiple iterations. To overcome these limitations, we introduce Tree-Search Enhanced LLM Agents (SELA), an innovative agent-based system that leverages Monte Carlo Tree Search (MCTS) to optimize the AutoML process. By representing pipeline configurations as trees, our framework enables agents to conduct experiments intelligently and iteratively refine their strategies, facilitating a more effective exploration of the machine learning solution space. This novel approach allows SELA to discover optimal pathways based on experimental feedback, improving the overall quality of the solutions. In an extensive evaluation across 20 machine learning datasets, we compare the performance of traditional and agent-based AutoML methods, demonstrating that SELA achieves a win rate of 65% to 80% against each baseline across all datasets. These results underscore the significant potential of agent-based strategies in AutoML, offering a fresh perspective on tackling complex machine learning challenges.
Related papers
- Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
We propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets.
The framework initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method.
The generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality.
arXiv Detail & Related papers (2024-11-21T02:30:53Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline.
Recent works have started exploiting large language models (LLM) to lessen such burden.
This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML.
arXiv Detail & Related papers (2024-10-03T20:01:09Z) - Are Large Language Models Good Prompt Optimizers? [65.48910201816223]
We conduct a study to uncover the actual mechanism of LLM-based Prompt Optimization.
Our findings reveal that the LLMs struggle to identify the true causes of errors during reflection, tending to be biased by their own prior knowledge.
We introduce a new "Automatic Behavior Optimization" paradigm, which directly optimize the target model's behavior in a more controllable manner.
arXiv Detail & Related papers (2024-02-03T09:48:54Z) - AutoAct: Automatic Agent Learning from Scratch for QA via Self-Planning [54.47116888545878]
AutoAct is an automatic agent learning framework for QA.
It does not rely on large-scale annotated data and synthetic planning trajectories from closed-source models.
arXiv Detail & Related papers (2024-01-10T16:57:24Z) - AutoML-GPT: Large Language Model for AutoML [5.9145212342776805]
We have established a framework called AutoML-GPT that integrates a comprehensive set of tools and libraries.
Through a conversational interface, users can specify their requirements, constraints, and evaluation metrics.
We have demonstrated that AutoML-GPT significantly reduces the time and effort required for machine learning tasks.
arXiv Detail & Related papers (2023-09-03T09:39:49Z) - AutoEn: An AutoML method based on ensembles of predefined Machine
Learning pipelines for supervised Traffic Forecasting [1.6242924916178283]
Traffic Forecasting (TF) is gaining relevance due to its ability to mitigate traffic congestion by forecasting future traffic states.
TF poses one big challenge to the Machine Learning paradigm, known as the Model Selection Problem (MSP)
We introduce AutoEn, which is a simple and efficient method for automatically generating multi-classifier ensembles from a predefined set of ML pipelines.
arXiv Detail & Related papers (2023-03-19T18:37:18Z) - Reinforcement Learning for Branch-and-Bound Optimisation using
Retrospective Trajectories [72.15369769265398]
Machine learning has emerged as a promising paradigm for branching.
We propose retro branching; a simple yet effective approach to RL for branching.
We outperform the current state-of-the-art RL branching algorithm by 3-5x and come within 20% of the best IL method's performance on MILPs with 500 constraints and 1000 variables.
arXiv Detail & Related papers (2022-05-28T06:08:07Z) - Robusta: Robust AutoML for Feature Selection via Reinforcement Learning [24.24652530951966]
We propose the first robust AutoML framework, Robusta--based on reinforcement learning (RL)
We show that the framework is able to improve the model robustness by up to 22% while maintaining competitive accuracy on benign samples.
arXiv Detail & Related papers (2021-01-15T03:12:29Z) - Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and
Robust AutoDL [53.40030379661183]
Auto-PyTorch is a framework to enable fully automated deep learning (AutoDL)
It combines multi-fidelity optimization with portfolio construction for warmstarting and ensembling of deep neural networks (DNNs)
We show that Auto-PyTorch performs better than several state-of-the-art competitors on average.
arXiv Detail & Related papers (2020-06-24T15:15:17Z) - Adaptation Strategies for Automated Machine Learning on Evolving Data [7.843067454030999]
This study is to understand the effect of data stream challenges such as concept drift on the performance of AutoML methods.
We propose 6 concept drift adaptation strategies and evaluate their effectiveness on different AutoML approaches.
arXiv Detail & Related papers (2020-06-09T14:29:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.