IMPROVE: Iterative Model Pipeline Refinement and Optimization Leveraging LLM Agents
- URL: http://arxiv.org/abs/2502.18530v1
- Date: Tue, 25 Feb 2025 01:52:37 GMT
- Title: IMPROVE: Iterative Model Pipeline Refinement and Optimization Leveraging LLM Agents
- Authors: Eric Xue, Zeyi Huang, Yuyang Ji, Haohan Wang,
- Abstract summary: Large language model (LLM) agents have emerged as a promising solution to automate the development of computer vision models.<n>We introduce Iterative Refinement, a novel strategy for LLM-driven ML pipeline design.<n>Iterative Refinement improves stability, interpretability, and overall model performance.
- Score: 17.301758094000125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computer vision is a critical component in a wide range of real-world applications, including plant monitoring in agriculture and handwriting classification in digital systems. However, developing high-performance computer vision models traditionally demands both machine learning (ML) expertise and domain-specific knowledge, making the process costly, labor-intensive, and inaccessible to many. Large language model (LLM) agents have emerged as a promising solution to automate this workflow, but most existing methods share a common limitation: they attempt to optimize entire pipelines in a single step before evaluation, making it difficult to attribute improvements to specific changes. This lack of granularity leads to unstable optimization and slower convergence, limiting their effectiveness. To address this, we introduce Iterative Refinement, a novel strategy for LLM-driven ML pipeline design inspired by how human ML experts iteratively refine models, focusing on one component at a time rather than making sweeping changes all at once. By systematically updating individual components based on real training feedback, Iterative Refinement improves stability, interpretability, and overall model performance. We implement this strategy in IMPROVE, an end-to-end LLM agent framework for automating and optimizing object classification pipelines. Through extensive evaluations across datasets of varying sizes and domains, including standard benchmarks and Kaggle competition datasets, we demonstrate that Iterative Refinement enables IMPROVE to consistently achieve better performance over existing zero-shot LLM-based approaches. These findings establish Iterative Refinement as an effective new strategy for LLM-driven ML automation and position IMPROVE as an accessible solution for building high-quality computer vision models without requiring ML expertise.
Related papers
- LLM-Guided Evolution: An Autonomous Model Optimization for Object Detection [0.0]
In machine learning, Neural Architecture Search (NAS) requires domain knowledge of model design and a large amount of trial-and-error to achieve promising performance.
The Large Language Model (LLM)-Guided Evolution (GE) framework transformed this approach by incorporating LLMs to directly modify model source code for image classification algorithms on CIFAR data.
We show that LLM-GE produced variants with significant performance improvements, such as an increase in Mean Average Precision from 92.5% to 94.5%.
arXiv Detail & Related papers (2025-04-03T05:06:06Z) - Efficient Model Selection for Time Series Forecasting via LLMs [52.31535714387368]
We propose to leverage Large Language Models (LLMs) as a lightweight alternative for model selection.
Our method eliminates the need for explicit performance matrices by utilizing the inherent knowledge and reasoning capabilities of LLMs.
arXiv Detail & Related papers (2025-04-02T20:33:27Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
Large language models (LLMs) have significantly improved language understanding and generation capabilities.
LLMs are difficult to deploy on resource-constrained edge devices due to their high computational and storage resource demands.
We propose structurally-aware adaptive pruning (SAAP) to significantly reduce the computational and memory costs while maintaining model performance.
arXiv Detail & Related papers (2024-12-19T18:08:04Z) - Efficient Self-Improvement in Multimodal Large Language Models: A Model-Level Judge-Free Approach [31.654345704242512]
This paper introduces a novel, model-level judge-free self-improvement framework.<n>Our approach employs a controlled feedback mechanism while eliminating the need for MLLMs in the verification loop.<n>We achieve superior precision and recall with significantly lower computational demands.
arXiv Detail & Related papers (2024-11-26T00:44:37Z) - AmoebaLLM: Constructing Any-Shape Large Language Models for Efficient and Instant Deployment [13.977849745488339]
AmoebaLLM is a novel framework designed to enable the instant derivation of large language models of arbitrary shapes.
AmoebaLLM significantly facilitates rapid deployment tailored to various platforms and applications.
arXiv Detail & Related papers (2024-11-15T22:02:28Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
We propose a novel framework Read-ME that transforms pre-trained dense LLMs into smaller MoE models.
Our approach employs activation sparsity to extract experts.
Read-ME outperforms other popular open-source dense models of similar scales.
arXiv Detail & Related papers (2024-10-24T19:48:51Z) - SELA: Tree-Search Enhanced LLM Agents for Automated Machine Learning [14.702694298483445]
Tree-Search Enhanced LLM Agents (SELA) is an agent-based system that leverages Monte Carlo Tree Search (MCTS) to optimize the AutoML process.
SELA represents pipeline configurations as trees, enabling agents to conduct experiments intelligently and iteratively refine their strategies.
In an extensive evaluation across 20 machine learning datasets, we compare the performance of traditional and agent-based AutoML methods.
arXiv Detail & Related papers (2024-10-22T17:56:08Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
This report examines the fine-tuning of Large Language Models (LLMs)
It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI.
The report introduces a structured seven-stage pipeline for fine-tuning LLMs.
arXiv Detail & Related papers (2024-08-23T14:48:02Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.<n>Our proposed framework incorporates retrieval-augmented generation (RAG) to enhance the system's ability to acquire domain-specific knowledge and generate solutions.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented generation (RAG) is a promising way to improve large language models (LLMs)<n>We propose a novel method that involves learning scalable and pluggable virtual tokens for RAG.
arXiv Detail & Related papers (2024-05-30T03:44:54Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.