SpectroMotion: Dynamic 3D Reconstruction of Specular Scenes
- URL: http://arxiv.org/abs/2410.17249v1
- Date: Tue, 22 Oct 2024 17:59:56 GMT
- Title: SpectroMotion: Dynamic 3D Reconstruction of Specular Scenes
- Authors: Cheng-De Fan, Chen-Wei Chang, Yi-Ruei Liu, Jie-Ying Lee, Jiun-Long Huang, Yu-Chee Tseng, Yu-Lun Liu,
- Abstract summary: We present SpectroMotion, a novel approach that combines 3D Gaussian Splatting (3DGS) with physically-based rendering (PBR) and deformation fields to reconstruct dynamic specular scenes.
- Score: 7.590932716513324
- License:
- Abstract: We present SpectroMotion, a novel approach that combines 3D Gaussian Splatting (3DGS) with physically-based rendering (PBR) and deformation fields to reconstruct dynamic specular scenes. Previous methods extending 3DGS to model dynamic scenes have struggled to accurately represent specular surfaces. Our method addresses this limitation by introducing a residual correction technique for accurate surface normal computation during deformation, complemented by a deformable environment map that adapts to time-varying lighting conditions. We implement a coarse-to-fine training strategy that significantly enhances both scene geometry and specular color prediction. We demonstrate that our model outperforms prior methods for view synthesis of scenes containing dynamic specular objects and that it is the only existing 3DGS method capable of synthesizing photorealistic real-world dynamic specular scenes, outperforming state-of-the-art methods in rendering complex, dynamic, and specular scenes.
Related papers
- DENSER: 3D Gaussians Splatting for Scene Reconstruction of Dynamic Urban Environments [0.0]
We propose DENSER, a framework that significantly enhances the representation of dynamic objects.
The proposed approach significantly outperforms state-of-the-art methods by a wide margin.
arXiv Detail & Related papers (2024-09-16T07:11:58Z) - Dynamic Scene Understanding through Object-Centric Voxelization and Neural Rendering [57.895846642868904]
We present a 3D generative model named DynaVol-S for dynamic scenes that enables object-centric learning.
voxelization infers per-object occupancy probabilities at individual spatial locations.
Our approach integrates 2D semantic features to create 3D semantic grids, representing the scene through multiple disentangled voxel grids.
arXiv Detail & Related papers (2024-07-30T15:33:58Z) - Modeling Ambient Scene Dynamics for Free-view Synthesis [31.233859111566613]
We introduce a novel method for dynamic free-view synthesis of an ambient scenes from a monocular capture.
Our method builds upon the recent advancements in 3D Gaussian Splatting (3DGS) that can faithfully reconstruct complex static scenes.
arXiv Detail & Related papers (2024-06-13T17:59:11Z) - Motion-aware 3D Gaussian Splatting for Efficient Dynamic Scene Reconstruction [89.53963284958037]
We propose a novel motion-aware enhancement framework for dynamic scene reconstruction.
Specifically, we first establish a correspondence between 3D Gaussian movements and pixel-level flow.
For the prevalent deformation-based paradigm that presents a harder optimization problem, a transient-aware deformation auxiliary module is proposed.
arXiv Detail & Related papers (2024-03-18T03:46:26Z) - SWinGS: Sliding Windows for Dynamic 3D Gaussian Splatting [7.553079256251747]
We extend 3D Gaussian Splatting to reconstruct dynamic scenes.
We produce high-quality renderings of general dynamic scenes with competitive quantitative performance.
Our method can be viewed in real-time in our dynamic interactive viewer.
arXiv Detail & Related papers (2023-12-20T03:54:03Z) - SC-GS: Sparse-Controlled Gaussian Splatting for Editable Dynamic Scenes [59.23385953161328]
Novel view synthesis for dynamic scenes is still a challenging problem in computer vision and graphics.
We propose a new representation that explicitly decomposes the motion and appearance of dynamic scenes into sparse control points and dense Gaussians.
Our method can enable user-controlled motion editing while retaining high-fidelity appearances.
arXiv Detail & Related papers (2023-12-04T11:57:14Z) - Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene
Reconstruction [29.83056271799794]
Implicit neural representation has paved the way for new approaches to dynamic scene reconstruction and rendering.
We propose a deformable 3D Gaussians Splatting method that reconstructs scenes using 3D Gaussians and learns them in canonical space.
Through a differential Gaussianizer, the deformable 3D Gaussians not only achieve higher rendering quality but also real-time rendering speed.
arXiv Detail & Related papers (2023-09-22T16:04:02Z) - Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis [58.5779956899918]
We present a method that simultaneously addresses the tasks of dynamic scene novel-view synthesis and six degree-of-freedom (6-DOF) tracking of all dense scene elements.
We follow an analysis-by-synthesis framework, inspired by recent work that models scenes as a collection of 3D Gaussians.
We demonstrate a large number of downstream applications enabled by our representation, including first-person view synthesis, dynamic compositional scene synthesis, and 4D video editing.
arXiv Detail & Related papers (2023-08-18T17:59:21Z) - NeuPhysics: Editable Neural Geometry and Physics from Monocular Videos [82.74918564737591]
We present a method for learning 3D geometry and physics parameters of a dynamic scene from only a monocular RGB video input.
Experiments show that our method achieves superior mesh and video reconstruction of dynamic scenes compared to competing Neural Field approaches.
arXiv Detail & Related papers (2022-10-22T04:57:55Z) - Unbiased 4D: Monocular 4D Reconstruction with a Neural Deformation Model [76.64071133839862]
Capturing general deforming scenes from monocular RGB video is crucial for many computer graphics and vision applications.
Our method, Ub4D, handles large deformations, performs shape completion in occluded regions, and can operate on monocular RGB videos directly by using differentiable volume rendering.
Results on our new dataset, which will be made publicly available, demonstrate a clear improvement over the state of the art in terms of surface reconstruction accuracy and robustness to large deformations.
arXiv Detail & Related papers (2022-06-16T17:59:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.