SWinGS: Sliding Windows for Dynamic 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2312.13308v2
- Date: Thu, 18 Jul 2024 10:18:51 GMT
- Title: SWinGS: Sliding Windows for Dynamic 3D Gaussian Splatting
- Authors: Richard Shaw, Michal Nazarczuk, Jifei Song, Arthur Moreau, Sibi Catley-Chandar, Helisa Dhamo, Eduardo Perez-Pellitero,
- Abstract summary: We extend 3D Gaussian Splatting to reconstruct dynamic scenes.
We produce high-quality renderings of general dynamic scenes with competitive quantitative performance.
Our method can be viewed in real-time in our dynamic interactive viewer.
- Score: 7.553079256251747
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Novel view synthesis has shown rapid progress recently, with methods capable of producing increasingly photorealistic results. 3D Gaussian Splatting has emerged as a promising method, producing high-quality renderings of scenes and enabling interactive viewing at real-time frame rates. However, it is limited to static scenes. In this work, we extend 3D Gaussian Splatting to reconstruct dynamic scenes. We model a scene's dynamics using dynamic MLPs, learning deformations from temporally-local canonical representations to per-frame 3D Gaussians. To disentangle static and dynamic regions, tuneable parameters weigh each Gaussian's respective MLP parameters, improving the dynamics modelling of imbalanced scenes. We introduce a sliding window training strategy that partitions the sequence into smaller manageable windows to handle arbitrary length scenes while maintaining high rendering quality. We propose an adaptive sampling strategy to determine appropriate window size hyperparameters based on the scene's motion, balancing training overhead with visual quality. Training a separate dynamic 3D Gaussian model for each sliding window allows the canonical representation to change, enabling the reconstruction of scenes with significant geometric changes. Temporal consistency is enforced using a fine-tuning step with self-supervising consistency loss on randomly sampled novel views. As a result, our method produces high-quality renderings of general dynamic scenes with competitive quantitative performance, which can be viewed in real-time in our dynamic interactive viewer.
Related papers
- SpectroMotion: Dynamic 3D Reconstruction of Specular Scenes [7.590932716513324]
We present SpectroMotion, a novel approach that combines 3D Gaussian Splatting (3DGS) with physically-based rendering (PBR) and deformation fields to reconstruct dynamic specular scenes.
arXiv Detail & Related papers (2024-10-22T17:59:56Z) - Dynamic 3D Gaussian Fields for Urban Areas [60.64840836584623]
We present an efficient neural 3D scene representation for novel-view synthesis (NVS) in large-scale, dynamic urban areas.
We propose 4DGF, a neural scene representation that scales to large-scale dynamic urban areas.
arXiv Detail & Related papers (2024-06-05T12:07:39Z) - Motion-aware 3D Gaussian Splatting for Efficient Dynamic Scene Reconstruction [89.53963284958037]
We propose a novel motion-aware enhancement framework for dynamic scene reconstruction.
Specifically, we first establish a correspondence between 3D Gaussian movements and pixel-level flow.
For the prevalent deformation-based paradigm that presents a harder optimization problem, a transient-aware deformation auxiliary module is proposed.
arXiv Detail & Related papers (2024-03-18T03:46:26Z) - VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction [59.40711222096875]
We present VastGaussian, the first method for high-quality reconstruction and real-time rendering on large scenes based on 3D Gaussian Splatting.
Our approach outperforms existing NeRF-based methods and achieves state-of-the-art results on multiple large scene datasets.
arXiv Detail & Related papers (2024-02-27T11:40:50Z) - GauFRe: Gaussian Deformation Fields for Real-time Dynamic Novel View
Synthesis [17.572987038801475]
We propose a method for dynamic scene reconstruction using deformable 3D Gaussians.
The differentiable pipeline is optimized end-to-end with a self-supervised rendering.
Our method results are comparable to state-of-the-art neural radiance field methods.
arXiv Detail & Related papers (2023-12-18T18:59:03Z) - SC-GS: Sparse-Controlled Gaussian Splatting for Editable Dynamic Scenes [59.23385953161328]
Novel view synthesis for dynamic scenes is still a challenging problem in computer vision and graphics.
We propose a new representation that explicitly decomposes the motion and appearance of dynamic scenes into sparse control points and dense Gaussians.
Our method can enable user-controlled motion editing while retaining high-fidelity appearances.
arXiv Detail & Related papers (2023-12-04T11:57:14Z) - Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene
Reconstruction [29.83056271799794]
Implicit neural representation has paved the way for new approaches to dynamic scene reconstruction and rendering.
We propose a deformable 3D Gaussians Splatting method that reconstructs scenes using 3D Gaussians and learns them in canonical space.
Through a differential Gaussianizer, the deformable 3D Gaussians not only achieve higher rendering quality but also real-time rendering speed.
arXiv Detail & Related papers (2023-09-22T16:04:02Z) - Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis [58.5779956899918]
We present a method that simultaneously addresses the tasks of dynamic scene novel-view synthesis and six degree-of-freedom (6-DOF) tracking of all dense scene elements.
We follow an analysis-by-synthesis framework, inspired by recent work that models scenes as a collection of 3D Gaussians.
We demonstrate a large number of downstream applications enabled by our representation, including first-person view synthesis, dynamic compositional scene synthesis, and 4D video editing.
arXiv Detail & Related papers (2023-08-18T17:59:21Z) - Neural Deformable Voxel Grid for Fast Optimization of Dynamic View
Synthesis [63.25919018001152]
We propose a fast deformable radiance field method to handle dynamic scenes.
Our method achieves comparable performance to D-NeRF using only 20 minutes for training.
arXiv Detail & Related papers (2022-06-15T17:49:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.