EndoFlow-SLAM: Real-Time Endoscopic SLAM with Flow-Constrained Gaussian Splatting
- URL: http://arxiv.org/abs/2506.21420v2
- Date: Sat, 05 Jul 2025 07:10:25 GMT
- Title: EndoFlow-SLAM: Real-Time Endoscopic SLAM with Flow-Constrained Gaussian Splatting
- Authors: Taoyu Wu, Yiyi Miao, Zhuoxiao Li, Haocheng Zhao, Kang Dang, Jionglong Su, Limin Yu, Haoang Li,
- Abstract summary: We introduce optical flow loss as a geometric constraint, which effectively constrains both the 3D structure of the scene and the camera motion.<n>In addition, to improve scene representation in the SLAM system, we improve the 3DGS refinement strategy by focusing on viewpoints corresponding to Keyframes.<n>Our method outperforms existing state-of-the-art methods in novel view synthesis and pose estimation.
- Score: 7.7956059927002705
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Efficient three-dimensional reconstruction and real-time visualization are critical in surgical scenarios such as endoscopy. In recent years, 3D Gaussian Splatting (3DGS) has demonstrated remarkable performance in efficient 3D reconstruction and rendering. Most 3DGS-based Simultaneous Localization and Mapping (SLAM) methods only rely on the appearance constraints for optimizing both 3DGS and camera poses. However, in endoscopic scenarios, the challenges include photometric inconsistencies caused by non-Lambertian surfaces and dynamic motion from breathing affects the performance of SLAM systems. To address these issues, we additionally introduce optical flow loss as a geometric constraint, which effectively constrains both the 3D structure of the scene and the camera motion. Furthermore, we propose a depth regularisation strategy to mitigate the problem of photometric inconsistencies and ensure the validity of 3DGS depth rendering in endoscopic scenes. In addition, to improve scene representation in the SLAM system, we improve the 3DGS refinement strategy by focusing on viewpoints corresponding to Keyframes with suboptimal rendering quality frames, achieving better rendering results. Extensive experiments on the C3VD static dataset and the StereoMIS dynamic dataset demonstrate that our method outperforms existing state-of-the-art methods in novel view synthesis and pose estimation, exhibiting high performance in both static and dynamic surgical scenes.
Related papers
- DGS-LRM: Real-Time Deformable 3D Gaussian Reconstruction From Monocular Videos [52.46386528202226]
We introduce the Deformable Gaussian Splats Large Reconstruction Model (DGS-LRM)<n>It is the first feed-forward method predicting deformable 3D Gaussian splats from a monocular posed video of any dynamic scene.<n>It achieves performance on par with state-of-the-art monocular video 3D tracking methods.
arXiv Detail & Related papers (2025-06-11T17:59:58Z) - EVolSplat: Efficient Volume-based Gaussian Splatting for Urban View Synthesis [61.1662426227688]
Existing NeRF and 3DGS-based methods show promising results in achieving photorealistic renderings but require slow, per-scene optimization.<n>We introduce EVolSplat, an efficient 3D Gaussian Splatting model for urban scenes that works in a feed-forward manner.
arXiv Detail & Related papers (2025-03-26T02:47:27Z) - Feature-EndoGaussian: Feature Distilled Gaussian Splatting in Surgical Deformable Scene Reconstruction [26.358467072736524]
We introduce Feature-EndoGaussian (FEG), an extension of 3DGS that integrates 2D segmentation cues into 3D rendering to enable real-time semantic and scene reconstruction.<n>FEG achieves superior performance (SSIM of 0.97, PSNR of 39.08, and LPIPS of 0.03) compared to leading methods.
arXiv Detail & Related papers (2025-03-08T10:50:19Z) - Advancing Dense Endoscopic Reconstruction with Gaussian Splatting-driven Surface Normal-aware Tracking and Mapping [12.027762278121052]
Endo-2DTAM is a real-time endoscopic SLAM system with 2D Gaussian Splatting (2DGS)<n>Our robust tracking module combines point-to-point and point-to-plane distance metrics.<n>Our mapping module utilizes normal consistency and depth distortion to enhance surface reconstruction quality.
arXiv Detail & Related papers (2025-01-31T17:15:34Z) - Event-boosted Deformable 3D Gaussians for Dynamic Scene Reconstruction [50.873820265165975]
We introduce the first approach combining event cameras, which capture high-temporal-resolution, continuous motion data, with deformable 3D-GS for dynamic scene reconstruction.<n>We propose a GS-Threshold Joint Modeling strategy, creating a mutually reinforcing process that greatly improves both 3D reconstruction and threshold modeling.<n>We contribute the first event-inclusive 4D benchmark with synthetic and real-world dynamic scenes, on which our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-11-25T08:23:38Z) - GeoSplatting: Towards Geometry Guided Gaussian Splatting for Physically-based Inverse Rendering [69.67264955234494]
GeoSplatting is a novel approach that augments 3DGS with explicit geometry guidance for precise light transport modeling.<n>By differentiably constructing a surface-grounded 3DGS from an optimizable mesh, our approach leverages well-defined mesh normals and the opaque mesh surface.<n>This enhancement ensures precise material decomposition while preserving the efficiency and high-quality rendering capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-31T17:57:07Z) - SpectroMotion: Dynamic 3D Reconstruction of Specular Scenes [7.590932716513324]
We present a novel approach that combines 3D Gaussian Splatting (3DGS) with physically-based rendering (PBR) and deformation fields to reconstruct dynamic specular scenes.<n>It is the only existing 3DGS method capable of synthesizing photorealistic real-world dynamic specular scenes.
arXiv Detail & Related papers (2024-10-22T17:59:56Z) - Free-SurGS: SfM-Free 3D Gaussian Splatting for Surgical Scene Reconstruction [36.46068581419659]
Real-time 3D reconstruction of surgical scenes plays a vital role in computer-assisted surgery.
Recent advancements in 3D Gaussian Splatting have shown great potential for real-time novel view synthesis.
We propose the first SfM-free 3DGS-based method for surgical scene reconstruction.
arXiv Detail & Related papers (2024-07-03T08:49:35Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
We propose a structure-aware Gaussian Splatting method (SAGS) that implicitly encodes the geometry of the scene.
SAGS reflects to state-of-the-art rendering performance and reduced storage requirements on benchmark novel-view synthesis datasets.
arXiv Detail & Related papers (2024-04-29T23:26:30Z) - Motion-aware 3D Gaussian Splatting for Efficient Dynamic Scene Reconstruction [89.53963284958037]
We propose a novel motion-aware enhancement framework for dynamic scene reconstruction.
Specifically, we first establish a correspondence between 3D Gaussian movements and pixel-level flow.
For the prevalent deformation-based paradigm that presents a harder optimization problem, a transient-aware deformation auxiliary module is proposed.
arXiv Detail & Related papers (2024-03-18T03:46:26Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z) - EndoGaussian: Real-time Gaussian Splatting for Dynamic Endoscopic Scene
Reconstruction [36.35631592019182]
We introduce EndoGaussian, a real-time endoscopic scene reconstruction framework built on 3D Gaussian Splatting (3DGS)
Our framework significantly boosts the rendering speed to a real-time level.
Experiments on public datasets demonstrate our efficacy against prior SOTAs in many aspects.
arXiv Detail & Related papers (2024-01-23T08:44:26Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.