論文の概要: Federated brain tumor segmentation: an extensive benchmark
- arxiv url: http://arxiv.org/abs/2410.17265v1
- Date: Mon, 07 Oct 2024 09:32:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-27 05:41:00.434784
- Title: Federated brain tumor segmentation: an extensive benchmark
- Title(参考訳): Federated brain tumor segmentation: an extensive benchmark
- Authors: Matthis Manthe, Stefan Duffner, Carole Lartizien,
- Abstract要約: 本稿では,この課題における3つのクラスすべてからのフェデレーション学習アルゴリズムの広範なベンチマークを提案する。
各カテゴリのいくつかの手法は、若干の性能改善をもたらし、フェデレーションの圧倒的なデータ分布に対する最終モデル(s)バイアスを制限する可能性があることを示す。
- 参考スコア(独自算出の注目度): 2.515027627030043
- License:
- Abstract: Recently, federated learning has raised increasing interest in the medical image analysis field due to its ability to aggregate multi-center data with privacy-preserving properties. A large amount of federated training schemes have been published, which we categorize into global (one final model), personalized (one model per institution) or hybrid (one model per cluster of institutions) methods. However, their applicability on the recently published Federated Brain Tumor Segmentation 2022 dataset has not been explored yet. We propose an extensive benchmark of federated learning algorithms from all three classes on this task. While standard FedAvg already performs very well, we show that some methods from each category can bring a slight performance improvement and potentially limit the final model(s) bias toward the predominant data distribution of the federation. Moreover, we provide a deeper understanding of the behaviour of federated learning on this task through alternative ways of distributing the pooled dataset among institutions, namely an Independent and Identical Distributed (IID) setup, and a limited data setup.
- Abstract(参考訳): 近年,多中心データとプライバシ保護特性を集約する能力により,医用画像解析分野への関心が高まっている。
我々は、グローバル(最終モデル1つ)、パーソナライズ(機関ごとのモデル1つ)、ハイブリッド(機関単位のクラスタ毎のモデル1つ)の手法に分類する。
しかし、最近発表されたFederated Brain tumor Segmentation 2022データセットの適用性はまだ調査されていない。
本稿では,この課題における3つのクラスすべてからのフェデレーション学習アルゴリズムの広範なベンチマークを提案する。
標準のFedAvgは、すでに非常によく機能していますが、各カテゴリのいくつかのメソッドは、わずかなパフォーマンス改善をもたらし、フェデレーションの圧倒的なデータ分布に対する最終モデル(s)バイアスを制限する可能性があることを示しています。
さらに,本課題におけるフェデレーション学習の振る舞いについて,独立分散IID(Independent and Identical Distributed, 独立分散IID)設定と限られたデータ設定という,プールデータセットを組織間で分散する代替手段によってより深く理解する。
関連論文リスト
- FedMM: Federated Multi-Modal Learning with Modality Heterogeneity in
Computational Pathology [3.802258033231335]
Federated Multi-Modal (FedMM) は、複数の単一モード特徴抽出器を訓練し、その後の分類性能を向上させる学習フレームワークである。
FedMMは、精度とAUCメトリクスの2つのベースラインを特に上回っている。
論文 参考訳(メタデータ) (2024-02-24T16:58:42Z) - Investigation of Federated Learning Algorithms for Retinal Optical
Coherence Tomography Image Classification with Statistical Heterogeneity [6.318288071829899]
我々は,OCT画像分類モデルを分散的に学習するためのFedAvgとFedProxの有効性を検討した。
IID と Non-IID 設定で複数のクライアントに公開可能な OCT データセットを分割し,各クライアントのサブセットをローカルにトレーニングした。
論文 参考訳(メタデータ) (2024-02-15T15:58:42Z) - Whole-brain radiomics for clustered federated personalization in brain
tumor segmentation [0.0]
本稿では,異なるスキャナの使用によって生じる特徴変化に合わせて,新しいパーソナライズアルゴリズムを提案する。
これは、各3次元画像ボリュームのグローバルなテクスチャをキャプチャする一連の放射能特徴の計算に基づいている。
論文 参考訳(メタデータ) (2023-10-17T12:33:43Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
我々は、計算異種データの形式化と処理を可能にする新しい集約フレームワークを導入し、分析する。
提案するアグリゲーションアルゴリズムは理論的および実験的予測から広範囲に解析される。
論文 参考訳(メタデータ) (2023-07-12T16:28:21Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - Adaptive Personlization in Federated Learning for Highly Non-i.i.d. Data [37.667379000751325]
フェデレートラーニング(Federated Learning, FL)は、医療機関にグローバルモデルにおけるコラボレーションの見通しを提供する分散ラーニング手法である。
本研究では,FLの中間的半言語モデルを生成する適応階層クラスタリング手法について検討する。
本実験は, 分類精度の標準的なFL法と比較して, 不均質分布において有意な性能向上を示した。
論文 参考訳(メタデータ) (2022-07-07T17:25:04Z) - FedMed-GAN: Federated Domain Translation on Unsupervised Cross-Modality
Brain Image Synthesis [55.939957482776194]
我々は、教師なし脳画像合成におけるフェデレートドメイン翻訳のための新しいベンチマーク(FedMed-GAN)を提案する。
FedMed-GANは発電機の性能を犠牲にすることなくモード崩壊を緩和する。
FedMed-GANと他の集中型手法を比較するための総合的な評価を提供する。
論文 参考訳(メタデータ) (2022-01-22T02:50:29Z) - FedSLD: Federated Learning with Shared Label Distribution for Medical
Image Classification [6.0088002781256185]
分類タスクのための共有ラベル分布(FedSLD)を用いたフェデレートラーニングを提案する。
FedSLDは、分布の知識が与えられた場合、最適化中に各データサンプルの局所的な目的への貢献を調整する。
その結果,FedSLDは従来のFL最適化アルゴリズムよりもコンバージェンス性能が高いことがわかった。
論文 参考訳(メタデータ) (2021-10-15T21:38:25Z) - FedDG: Federated Domain Generalization on Medical Image Segmentation via
Episodic Learning in Continuous Frequency Space [63.43592895652803]
フェデレーションラーニングは、分散医療機関がプライバシ保護を備えた共有予測モデルを共同で学習することを可能にします。
臨床展開では、連合学習で訓練されたモデルは、連邦外の完全に見えない病院に適用された場合、パフォーマンス低下に苦しむ可能性がある。
そこで本研究では,この問題に対してELCFS(Episodic Learning in Continuous frequency Space)と呼ばれる新しいアプローチを提案する。
本手法の有効性は,2つの医用画像分割作業における最先端および深部アブレーション実験よりも優れていた。
論文 参考訳(メタデータ) (2021-03-10T13:05:23Z) - Multi-Center Federated Learning [62.57229809407692]
本稿では,フェデレート学習のための新しい多中心集約機構を提案する。
非IIDユーザデータから複数のグローバルモデルを学び、同時にユーザとセンタ間の最適なマッチングを導出する。
ベンチマークデータセットによる実験結果から,本手法はいくつかの一般的なフェデレーション学習法より優れていることが示された。
論文 参考訳(メタデータ) (2020-05-03T09:14:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。