Real-time experiment-theory closed-loop interaction for autonomous materials science
- URL: http://arxiv.org/abs/2410.17430v1
- Date: Tue, 22 Oct 2024 21:00:18 GMT
- Title: Real-time experiment-theory closed-loop interaction for autonomous materials science
- Authors: Haotong Liang, Chuangye Wang, Heshan Yu, Dylan Kirsch, Rohit Pant, Austin McDannald, A. Gilad Kusne, Ji-Cheng Zhao, Ichiro Takeuchi,
- Abstract summary: We demonstrate Autonomous MAterials Search Engine (AMASE) to perform self-driving continuous cyclical interaction of experiments and computational predictions.
AMASE was able to accurately determine the eutectic phase diagram of the Sn-Bi binary thin-film system on the fly from a self-guided campaign.
This study demonstrates for the first time the possibility of real-time, autonomous, and iterative interactions of experiments and theory carried out without any human intervention.
- Score: 10.983609710462844
- License:
- Abstract: Iterative cycles of theoretical prediction and experimental validation are the cornerstone of the modern scientific method. However, the proverbial "closing of the loop" in experiment-theory cycles in practice are usually ad hoc, often inherently difficult, or impractical to repeat on a systematic basis, beset by the scale or the time constraint of computation or the phenomena under study. Here, we demonstrate Autonomous MAterials Search Engine (AMASE), where we enlist robot science to perform self-driving continuous cyclical interaction of experiments and computational predictions for materials exploration. In particular, we have applied the AMASE formalism to the rapid mapping of a temperature-composition phase diagram, a fundamental task for the search and discovery of new materials. Thermal processing and experimental determination of compositional phase boundaries in thin films are autonomously interspersed with real-time updating of the phase diagram prediction through the minimization of Gibbs free energies. AMASE was able to accurately determine the eutectic phase diagram of the Sn-Bi binary thin-film system on the fly from a self-guided campaign covering just a small fraction of the entire composition - temperature phase space, translating to a 6-fold reduction in the number of necessary experiments. This study demonstrates for the first time the possibility of real-time, autonomous, and iterative interactions of experiments and theory carried out without any human intervention.
Related papers
- Bayesian Co-navigation: Dynamic Designing of the Materials Digital Twins via Active Learning [1.1057473962658189]
Integration of theory into automated and autonomous experimental setups is emerging as a crucial objective for accelerating scientific research.
Here, we introduce a method for integrating theory into the loop through Bayesian co-navigation of theoretical model space and experimentation.
While demonstrated here within the context of functional responses in ferroelectric materials, our approach holds promise for broader applications.
arXiv Detail & Related papers (2024-04-19T14:11:32Z) - GFlowNets for AI-Driven Scientific Discovery [74.27219800878304]
We present a new probabilistic machine learning framework called GFlowNets.
GFlowNets can be applied in the modeling, hypotheses generation and experimental design stages of the experimental science loop.
We argue that GFlowNets can become a valuable tool for AI-driven scientific discovery.
arXiv Detail & Related papers (2023-02-01T17:29:43Z) - Analyzing X-ray Thomson scattering experiments of warm dense matter in
the imaginary-time domain: theoretical models and simulations [0.0]
We introduce a model for the imaginary-time dependence of two-body correlations within the framework of imaginary-time path integrals.
As a practical example, we compare our new model to extensive ab initio path integral Monte Carlo results for the ITCF of a uniform electron gas.
arXiv Detail & Related papers (2022-11-01T16:51:16Z) - Response of open two-band systems to a momentum-carrying single-mode
quantized field [3.713896286578935]
We study the response of topological insulator driven by momentum-carrying single-mode field.
We show that from the analytical solution of hall conductance compared with the closed system, there is an extra correction term.
The phase transition point of topological phase is robust to the environment.
arXiv Detail & Related papers (2022-10-18T16:24:49Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Unsupervised machine learning of topological phase transitions from
experimental data [52.77024349608834]
We apply unsupervised machine learning techniques to experimental data from ultracold atoms.
We obtain the topological phase diagram of the Haldane model in a completely unbiased fashion.
Our work provides a benchmark for unsupervised detection of new exotic phases in complex many-body systems.
arXiv Detail & Related papers (2021-01-14T16:38:21Z) - Autonomous implementation of thermodynamic cycles at the nanoscale [0.0]
We build an autonomous model that implements a thermodynamic cycle in a certain parameter regime.
We find that a cycle analysis for a single-electron working fluid is it not justified, but a few-electron working fluid could suffice to justify it.
arXiv Detail & Related papers (2021-01-13T12:07:58Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Experimental realization of the classical Dicke model [0.0]
We report the experimental implementation of the Dicke model in the semiclassical approximation.
The simplicity and versatility of our platform allows us not only to experimentally explore the coexistence of regular and chaotic trajectories in the Dicke model.
In this analysis, the trajectories in phase space, Lyapunov exponents and the recently introduced Out-of-Time-Order-Correlator (OTOC) are used to identify the different operating regimes of our electronic device.
arXiv Detail & Related papers (2020-02-25T17:32:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.