Unsupervised Domain Adaptation for Action Recognition via Self-Ensembling and Conditional Embedding Alignment
- URL: http://arxiv.org/abs/2410.17489v1
- Date: Wed, 23 Oct 2024 00:59:27 GMT
- Title: Unsupervised Domain Adaptation for Action Recognition via Self-Ensembling and Conditional Embedding Alignment
- Authors: Indrajeet Ghosh, Garvit Chugh, Abu Zaher Md Faridee, Nirmalya Roy,
- Abstract summary: We propose a novel joint optimization architecture comprised of three functions: consistency regularizer, temporal ensemble and conditional distribution alignment.
$mu$DAR results in a range of $approx$ 4-12% average macro-F1 score improvement over six state-of-the-art UDA methods in four benchmark wHAR datasets.
- Score: 2.06242362470764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in deep learning-based wearable human action recognition (wHAR) have improved the capture and classification of complex motions, but adoption remains limited due to the lack of expert annotations and domain discrepancies from user variations. Limited annotations hinder the model's ability to generalize to out-of-distribution samples. While data augmentation can improve generalizability, unsupervised augmentation techniques must be applied carefully to avoid introducing noise. Unsupervised domain adaptation (UDA) addresses domain discrepancies by aligning conditional distributions with labeled target samples, but vanilla pseudo-labeling can lead to error propagation. To address these challenges, we propose $\mu$DAR, a novel joint optimization architecture comprised of three functions: (i) consistency regularizer between augmented samples to improve model classification generalizability, (ii) temporal ensemble for robust pseudo-label generation and (iii) conditional distribution alignment to improve domain generalizability. The temporal ensemble works by aggregating predictions from past epochs to smooth out noisy pseudo-label predictions, which are then used in the conditional distribution alignment module to minimize kernel-based class-wise conditional maximum mean discrepancy ($k$CMMD) between the source and target feature space to learn a domain invariant embedding. The consistency-regularized augmentations ensure that multiple augmentations of the same sample share the same labels; this results in (a) strong generalization with limited source domain samples and (b) consistent pseudo-label generation in target samples. The novel integration of these three modules in $\mu$DAR results in a range of $\approx$ 4-12% average macro-F1 score improvement over six state-of-the-art UDA methods in four benchmark wHAR datasets
Related papers
- From Entanglement to Alignment: Representation Space Decomposition for Unsupervised Time Series Domain Adaptation [18.100665738436398]
We introduce DARSD, a novel UDA framework with theoretical explainability that explicitly realizes UDA tasks from the perspective of representation space decomposition.<n>DarSD consists of three synergistic components: (I) An adversarial learnable common invariant basis that projects original features into a domain-invariant subspace while preserving semantic content; (II) A pseudo-labeling mechanism that dynamically separates target features based on confidence, hindering error accumulation; (III) A hybrid contrastive optimization strategy that simultaneously enforces feature clustering and consistency while mitigating emerging distribution gaps.
arXiv Detail & Related papers (2025-07-28T16:26:28Z) - Unsupervised Domain Adaptation for 3D LiDAR Semantic Segmentation Using Contrastive Learning and Multi-Model Pseudo Labeling [0.7373617024876725]
Unsupervised contrastive learning at the segment level is used to pre-train a backbone network.<n>A multi-model pseudo-labeling strategy is introduced, utilizing an ensemble of diverse state-of-the-art architectures.<n>Experiments adapting from Semantic KITTI to unlabeled target datasets demonstrate significant improvements in segmentation accuracy.
arXiv Detail & Related papers (2025-07-24T08:21:43Z) - Generate Aligned Anomaly: Region-Guided Few-Shot Anomaly Image-Mask Pair Synthesis for Industrial Inspection [53.137651284042434]
Anomaly inspection plays a vital role in industrial manufacturing, but the scarcity of anomaly samples limits the effectiveness of existing methods.<n>We propose Generate grained Anomaly (GAA), a region-guided, few-shot anomaly image-mask pair generation framework.<n>GAA generates realistic, diverse, and semantically aligned anomalies using only a small number of samples.
arXiv Detail & Related papers (2025-07-13T12:56:59Z) - Progressive Multi-Level Alignments for Semi-Supervised Domain Adaptation SAR Target Recognition Using Simulated Data [3.1951121258423334]
We develop an instance-prototype alignment (AIPA) strategy to push the source domain instances close to the corresponding target prototypes.
We also develop an instance-prototype alignment (AIPA) strategy to push the source domain instances close to the corresponding target prototypes.
arXiv Detail & Related papers (2024-11-07T13:53:13Z) - Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual Test-Time Adaptation [49.827306773992376]
Continual Test-Time Adaptation (CTTA) is proposed to migrate a source pre-trained model to continually changing target distributions.
Our proposed method attains state-of-the-art performance in both classification and segmentation CTTA tasks.
arXiv Detail & Related papers (2023-12-19T15:34:52Z) - AdaTriplet-RA: Domain Matching via Adaptive Triplet and Reinforced
Attention for Unsupervised Domain Adaptation [15.905869933337101]
Unsupervised domain adaption (UDA) is a transfer learning task where the data and annotations of the source domain are available but only have access to the unlabeled target data during training.
We propose to improve the unsupervised domain adaptation task with an inter-domain sample matching scheme.
We apply the widely-used and robust Triplet loss to match the inter-domain samples.
To reduce the catastrophic effect of the inaccurate pseudo-labels generated during training, we propose a novel uncertainty measurement method to select reliable pseudo-labels automatically and progressively refine them.
arXiv Detail & Related papers (2022-11-16T13:04:24Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Cross-Domain Gradient Discrepancy Minimization for Unsupervised Domain
Adaptation [22.852237073492894]
Unsupervised Domain Adaptation (UDA) aims to generalize the knowledge learned from a well-labeled source domain to an unlabeled target domain.
We propose a cross-domain discrepancy minimization (CGDM) method which explicitly minimizes the discrepancy of gradients generated by source samples and target samples.
In order to compute the gradient signal of target samples, we further obtain target pseudo labels through a clustering-based self-supervised learning.
arXiv Detail & Related papers (2021-06-08T07:35:40Z) - Generalizable Representation Learning for Mixture Domain Face
Anti-Spoofing [53.82826073959756]
Face anti-spoofing approach based on domain generalization(DG) has drawn growing attention due to its robustness forunseen scenarios.
We propose domain dy-namic adjustment meta-learning (D2AM) without using do-main labels.
To overcome the limitation, we propose domain dy-namic adjustment meta-learning (D2AM) without using do-main labels.
arXiv Detail & Related papers (2021-05-06T06:04:59Z) - Semi-Supervised Domain Adaptation with Prototypical Alignment and
Consistency Learning [86.6929930921905]
This paper studies how much it can help address domain shifts if we further have a few target samples labeled.
To explore the full potential of landmarks, we incorporate a prototypical alignment (PA) module which calculates a target prototype for each class from the landmarks.
Specifically, we severely perturb the labeled images, making PA non-trivial to achieve and thus promoting model generalizability.
arXiv Detail & Related papers (2021-04-19T08:46:08Z) - Adaptive Pseudo-Label Refinement by Negative Ensemble Learning for
Source-Free Unsupervised Domain Adaptation [35.728603077621564]
Existing Unsupervised Domain Adaptation (UDA) methods presumes source and target domain data to be simultaneously available during training.
A pre-trained source model is always considered to be available, even though performing poorly on target due to the well-known domain shift problem.
We propose a unified method to tackle adaptive noise filtering and pseudo-label refinement.
arXiv Detail & Related papers (2021-03-29T22:18:34Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Self-Guided Adaptation: Progressive Representation Alignment for Domain
Adaptive Object Detection [86.69077525494106]
Unsupervised domain adaptation (UDA) has achieved unprecedented success in improving the cross-domain robustness of object detection models.
Existing UDA methods largely ignore the instantaneous data distribution during model learning, which could deteriorate the feature representation given large domain shift.
We propose a Self-Guided Adaptation (SGA) model, target at aligning feature representation and transferring object detection models across domains.
arXiv Detail & Related papers (2020-03-19T13:30:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.