From Entanglement to Alignment: Representation Space Decomposition for Unsupervised Time Series Domain Adaptation
- URL: http://arxiv.org/abs/2507.20968v3
- Date: Wed, 06 Aug 2025 07:55:26 GMT
- Title: From Entanglement to Alignment: Representation Space Decomposition for Unsupervised Time Series Domain Adaptation
- Authors: Rongyao Cai, Ming Jin, Qingsong Wen, Kexin Zhang,
- Abstract summary: We introduce DARSD, a novel UDA framework with theoretical explainability that explicitly realizes UDA tasks from the perspective of representation space decomposition.<n>DarSD consists of three synergistic components: (I) An adversarial learnable common invariant basis that projects original features into a domain-invariant subspace while preserving semantic content; (II) A pseudo-labeling mechanism that dynamically separates target features based on confidence, hindering error accumulation; (III) A hybrid contrastive optimization strategy that simultaneously enforces feature clustering and consistency while mitigating emerging distribution gaps.
- Score: 18.100665738436398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain shift poses a fundamental challenge in time series analysis, where models trained on source domain often fail dramatically when applied in target domain with different yet similar distributions. While current unsupervised domain adaptation (UDA) methods attempt to align cross-domain feature distributions, they typically treat features as indivisible entities, ignoring their intrinsic compositions that govern domain adaptation. We introduce DARSD, a novel UDA framework with theoretical explainability that explicitly realizes UDA tasks from the perspective of representation space decomposition. Our core insight is that effective domain adaptation requires not just alignment, but principled disentanglement of transferable knowledge from mixed representations. DARSD consists of three synergistic components: (I) An adversarial learnable common invariant basis that projects original features into a domain-invariant subspace while preserving semantic content; (II) A prototypical pseudo-labeling mechanism that dynamically separates target features based on confidence, hindering error accumulation; (III) A hybrid contrastive optimization strategy that simultaneously enforces feature clustering and consistency while mitigating emerging distribution gaps. Comprehensive experiments conducted on four benchmarks (WISDM, HAR, HHAR, and MFD) demonstrate DARSD's superiority against 12 UDA algorithms, achieving optimal performance in 35 out of 53 scenarios and ranking first across all benchmarks.
Related papers
- Unified modality separation: A vision-language framework for unsupervised domain adaptation [60.8391821117794]
Unsupervised domain adaptation (UDA) enables models trained on a labeled source domain to handle new unlabeled domains.<n>We propose a unified modality separation framework that accommodates both modality-specific and modality-invariant components.<n>Our methods achieve up to 9% performance gain with 9 times of computational efficiencies.
arXiv Detail & Related papers (2025-08-07T02:51:10Z) - Heterogeneous-Modal Unsupervised Domain Adaptation via Latent Space Bridging [12.171477896623148]
We propose a novel setting called Heterogeneous-Modal Unsupervised Domain Adaptation (HMUDA)<n>HMUDA enables knowledge transfer between completely different modalities by leveraging a bridge domain containing unlabeled samples from both modalities.<n>We propose Latent Space Bridging (LSB), a specialized framework designed for the semantic segmentation task.
arXiv Detail & Related papers (2025-06-19T02:31:51Z) - Exploiting Aggregation and Segregation of Representations for Domain Adaptive Human Pose Estimation [50.31351006532924]
Human pose estimation (HPE) has received increasing attention recently due to its wide application in motion analysis, virtual reality, healthcare, etc.<n>It suffers from the lack of labeled diverse real-world datasets due to the time- and labor-intensive annotation.<n>We introduce a novel framework that capitalizes on both representation aggregation and segregation for domain adaptive human pose estimation.
arXiv Detail & Related papers (2024-12-29T17:59:45Z) - Semi Supervised Heterogeneous Domain Adaptation via Disentanglement and Pseudo-Labelling [4.33404822906643]
Semi-supervised domain adaptation methods leverage information from a source labelled domain to generalize over a scarcely labelled target domain.
Such a setting is denoted as Semi-Supervised Heterogeneous Domain Adaptation (SSHDA)
We introduce SHeDD (Semi-supervised Heterogeneous Domain Adaptation via Disentanglement) an end-to-end neural framework tailored to learning a target domain.
arXiv Detail & Related papers (2024-06-20T08:02:49Z) - Unified Domain Adaptive Semantic Segmentation [96.74199626935294]
Unsupervised Adaptive Domain Semantic (UDA-SS) aims to transfer the supervision from a labeled source domain to an unlabeled target domain.<n>We propose a Quad-directional Mixup (QuadMix) method, characterized by tackling distinct point attributes and feature inconsistencies.<n>Our method outperforms the state-of-the-art works by large margins on four challenging UDA-SS benchmarks.
arXiv Detail & Related papers (2023-11-22T09:18:49Z) - SUG: Single-dataset Unified Generalization for 3D Point Cloud
Classification [44.27324696068285]
We propose a Single-dataset Unified Generalization (SUG) framework to alleviate the unforeseen domain differences faced by a well-trained source model.
Specifically, we first design a Multi-grained Sub-domain Alignment (MSA) method, which can constrain the learned representations to be domain-agnostic and discriminative.
Then, a Sample-level Domain-aware Attention (SDA) strategy is presented, which can selectively enhance easy-to-adapt samples from different sub-domains.
arXiv Detail & Related papers (2023-05-16T04:36:04Z) - Revisiting Deep Subspace Alignment for Unsupervised Domain Adaptation [42.16718847243166]
Unsupervised domain adaptation (UDA) aims to transfer and adapt knowledge from a labeled source domain to an unlabeled target domain.
Traditionally, subspace-based methods form an important class of solutions to this problem.
This paper revisits the use of subspace alignment for UDA and proposes a novel adaptation algorithm that consistently leads to improved generalization.
arXiv Detail & Related papers (2022-01-05T20:16:38Z) - Margin Preserving Self-paced Contrastive Learning Towards Domain
Adaptation for Medical Image Segmentation [51.93711960601973]
We propose a novel margin preserving self-paced contrastive Learning model for cross-modal medical image segmentation.
With the guidance of progressively refined semantic prototypes, a novel margin preserving contrastive loss is proposed to boost the discriminability of embedded representation space.
Experiments on cross-modal cardiac segmentation tasks demonstrate that MPSCL significantly improves semantic segmentation performance.
arXiv Detail & Related papers (2021-03-15T15:23:10Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised domain adaptation (UDA) is to learn classification models that make predictions for unlabeled data on a target domain.
We propose a hybrid model of Structurally Regularized Deep Clustering, which integrates the regularized discriminative clustering of target data with a generative one.
Our proposed H-SRDC outperforms all the existing methods under both the inductive and transductive settings.
arXiv Detail & Related papers (2020-12-08T08:52:00Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Dual Mixup Regularized Learning for Adversarial Domain Adaptation [19.393393465837377]
We propose a dual mixup regularized learning (DMRL) method for unsupervised domain adaptation.
DMRL guides the classifier in enhancing consistent predictions in-between samples, and enriches the intrinsic structures of the latent space.
A series of empirical studies on four domain adaptation benchmarks demonstrate that our approach can achieve the state-of-the-art.
arXiv Detail & Related papers (2020-07-07T00:24:14Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.