論文の概要: Cross-model Control: Improving Multiple Large Language Models in One-time Training
- arxiv url: http://arxiv.org/abs/2410.17599v1
- Date: Wed, 23 Oct 2024 06:52:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:56:22.261817
- Title: Cross-model Control: Improving Multiple Large Language Models in One-time Training
- Title(参考訳): クロスモデル制御:1回のトレーニングで複数の大規模言語モデルを改善する
- Authors: Jiayi Wu, Hao Sun, Hengyi Cai, Lixin Su, Shuaiqiang Wang, Dawei Yin, Xiang Li, Ming Gao,
- Abstract要約: クロスモデル制御(CMC)は、1回トレーニングで複数の大規模言語モデルを改善する手法である。
この知見に基づいて、最小数のパラメータを持つ小さな言語モデルを組み込む。
本稿では,PM-Mined という新しいトークンマッピング手法を提案する。
- 参考スコア(独自算出の注目度): 34.98931804630706
- License:
- Abstract: The number of large language models (LLMs) with varying parameter scales and vocabularies is increasing. While they deliver powerful performance, they also face a set of common optimization needs to meet specific requirements or standards, such as instruction following or avoiding the output of sensitive information from the real world. However, how to reuse the fine-tuning outcomes of one model to other models to reduce training costs remains a challenge. To bridge this gap, we introduce Cross-model Control (CMC), a method that improves multiple LLMs in one-time training with a portable tiny language model. Specifically, we have observed that the logit shift before and after fine-tuning is remarkably similar across different models. Based on this insight, we incorporate a tiny language model with a minimal number of parameters. By training alongside a frozen template LLM, the tiny model gains the capability to alter the logits output by the LLMs. To make this tiny language model applicable to models with different vocabularies, we propose a novel token mapping strategy named PM-MinED. We have conducted extensive experiments on instruction tuning and unlearning tasks, demonstrating the effectiveness of CMC. Our code is available at https://github.com/wujwyi/CMC.
- Abstract(参考訳): パラメータスケールや語彙の異なる大規模言語モデル(LLM)の数が増加している。
強力なパフォーマンスを提供する一方で、現実世界からの機密情報の出力を追従したり回避したりするなど、特定の要件や標準を満たすための一連の共通最適化も直面する。
しかし、トレーニングコストを削減するために、あるモデルの微調整結果を他のモデルに再利用する方法は、依然として課題である。
このギャップを埋めるために、ポータブルな小言語モデルを用いて1回のトレーニングで複数のLLMを改善する手法であるCross-model Control (CMC)を導入する。
具体的には、微調整前後のロジットシフトが、異なるモデル間で著しく類似していることが観察された。
この知見に基づいて、最小数のパラメータを持つ小さな言語モデルを組み込む。
凍結テンプレートLDMと一緒にトレーニングすることで、小さなモデルでLSMが出力するロジットを変更することができる。
この小さな言語モデルを異なる語彙を持つモデルに適用するために,PM-Mined という新しいトークンマッピング手法を提案する。
我々は、CMCの有効性を実証し、指導チューニングと未学習タスクについて広範な実験を行った。
私たちのコードはhttps://github.com/wujwyi/CMC.comで公開されています。
関連論文リスト
- LLAVADI: What Matters For Multimodal Large Language Models Distillation [77.73964744238519]
本研究では,新しい効率的なモデル構造を提案するのではなく,スクラッチから小規模MLLMを訓練する。
本研究は, 知識蒸留プロセスにおける学習戦略, モデル選択, 蒸留アルゴリズムに関するものである。
異なるベンチマークと適切な戦略を評価することで、2.7Bの小型モデルでも7Bまたは13Bのパラメータを持つ大型モデルと同等に動作することができる。
論文 参考訳(メタデータ) (2024-07-28T06:10:47Z) - ArthModel: Enhance Arithmetic Skills to Large Language Model [0.0]
この作業は、さまざまな思考方法、トレーニング方法、言語モデルの使用方法を提供します。
コードとモデルはurlhttps://www.eteced.com/eteced/arithmetic_finetuning_v1でリリースされる。
論文 参考訳(メタデータ) (2023-11-30T15:06:50Z) - The Ups and Downs of Large Language Model Inference with Vocabulary Trimming by Language Heuristics [74.99898531299148]
本研究は,興味のある言語への埋め込みエントリを制限し,時間と記憶効率を高めることによる語彙トリミング(VT)について検討する。
Unicodeベースのスクリプトフィルタリングとコーパスベースの選択という2つの言語を異なる言語ファミリやサイズに適用する。
その結果、VTは小型モデルのメモリ使用量を50%近く削減し、生成速度が25%向上した。
論文 参考訳(メタデータ) (2023-11-16T09:35:50Z) - TIM: Teaching Large Language Models to Translate with Comparison [78.66926087162672]
本稿では,LLMに翻訳学習を教えるために,サンプルを用いた新しいフレームワークを提案する。
我々のアプローチは、正しい翻訳例と間違った翻訳例をモデルに提示し、好みの損失を使ってモデルの学習をガイドすることである。
本研究は,翻訳タスクのための微調整LDMの新しい視点を提供し,高品質な翻訳を実現するための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2023-07-10T08:15:40Z) - MiniLLM: Knowledge Distillation of Large Language Models [112.93051247165089]
知識蒸留(KD)は,大規模言語モデル(LLM)の高い計算要求を低減させる,有望な手法である。
より小さな言語モデルにLPMを蒸留するKD手法を提案する。
提案手法は,120Mから13Bのパラメータを持つ異なるモデルファミリに対してスケーラブルである。
論文 参考訳(メタデータ) (2023-06-14T14:44:03Z) - Contrastive Alignment of Vision to Language Through Parameter-Efficient
Transfer Learning [60.26952378997713]
コントラスト的視覚言語モデル(例えばCLIP)は、コントラスト的トレーニングを通じて視覚モデルと言語モデルの全てのパラメータを更新することによって作成される。
パラメータ更新の最小セット($7%)が、フルモデルトレーニングと同じパフォーマンスを実現可能であることを示す。
既存の知識がパラメータ効率のトレーニングにおいてより強く保存されていることを示す。
論文 参考訳(メタデータ) (2023-03-21T14:12:08Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
本稿では,既存モデルの適応性を向上するための直接的な取り組みを提案し,認識を伴う言語モデルの拡張を提案する。
視覚言語タスクに事前訓練されたモデルを適用するための既存のアプローチは、その効率を妨げているいくつかの重要なコンポーネントに依存している。
総パラメータの99%以上を凍結し,1つの直線射影層のみをトレーニングし,1つのトレーニング可能なトークンのみを予測することにより,我々のアプローチ(eP-ALM)は,VQAとCaptioningの他のベースラインよりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2023-03-20T19:20:34Z) - Mini-Model Adaptation: Efficiently Extending Pretrained Models to New
Languages via Aligned Shallow Training [36.5936227129021]
トランスフォーマー本体を凍結させながら、新しい組込みを学習することで、事前訓練されたマスケッド言語モデルを新しい言語に拡張することができる。
我々は,大容量モデルのパラメータのごく一部から浅いミニモデルを構築する計算効率の代替モデルであるミニモデル適応を提案する。
新しい言語固有の埋め込みは、ミニモデル上で効率的に訓練され、高速な言語間移動のために整列した大きなモデルにプラグインされる。
論文 参考訳(メタデータ) (2022-12-20T18:17:28Z) - Zero-Shot Learners for Natural Language Understanding via a Unified
Multiple Choice Perspective [26.41585967095811]
ゼロショット学習は、与えられたタスクでモデルをトレーニングすることを目的としており、追加のトレーニングなしで新しい学習タスクに対処できる。
提案手法は、ゼロショット学習を複数選択タスクに変換し、FLANなどの大規模生成モデルで一般的に使用される問題を回避する。
提案手法は,いくつかのベンチマークにおいて最先端の性能を示し,自然言語推論やテキスト分類といったタスクに対して良好な結果をもたらす。
論文 参考訳(メタデータ) (2022-10-16T17:24:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。