Ranking of Multi-Response Experiment Treatments
- URL: http://arxiv.org/abs/2410.17604v1
- Date: Wed, 23 Oct 2024 07:00:35 GMT
- Title: Ranking of Multi-Response Experiment Treatments
- Authors: Miguel R. Pebes-Trujillo, Itamar Shenhar, Aravind Harikumar, Ittai Herrmann, Menachem Moshelion, Kee Woei Ng, Matan Gavish,
- Abstract summary: We present a probabilistic ranking model to identify the optimal treatment in multiple-response experiments.
In our framework, we first formulate overall optimality in terms of treatment ranks.
We infer the latent ranking that allow us to report treatments from optimal to least optimal, provided ideal desirable properties.
- Score: 0.4711628883579317
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a probabilistic ranking model to identify the optimal treatment in multiple-response experiments. In contemporary practice, treatments are applied over individuals with the goal of achieving multiple ideal properties on them simultaneously. However, often there are competing properties, and the optimality of one cannot be achieved without compromising the optimality of another. Typically, we still want to know which treatment is the overall best. In our framework, we first formulate overall optimality in terms of treatment ranks. Then we infer the latent ranking that allow us to report treatments from optimal to least optimal, provided ideal desirable properties. We demonstrate through simulations and real data analysis how we can achieve reliability of inferred ranks in practice. We adopt a Bayesian approach and derive an associated Markov Chain Monte Carlo algorithm to fit our model to data. Finally, we discuss the prospects of adoption of our method as a standard tool for experiment evaluation in trials-based research.
Related papers
- Optimality in importance sampling: a gentle survey [50.79602839359522]
The performance of Monte Carlo sampling methods relies on the crucial choice of a proposal density.
This work is an exhaustive review around the concept of optimality in importance sampling.
arXiv Detail & Related papers (2025-02-11T09:23:26Z) - Optimal Adaptive Experimental Design for Estimating Treatment Effect [14.088972921434761]
This paper addresses the fundamental question of determining the optimal accuracy in estimating the treatment effect.
By incorporating the concept of doubly robust method into sequential experimental design, we frame the optimal estimation problem as an online bandit learning problem.
Using tools and ideas from both bandit algorithm design and adaptive statistical estimation, we propose a general low switching adaptive experiment framework.
arXiv Detail & Related papers (2024-10-07T23:22:51Z) - An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
We propose a human-AI collaborative Bayesian framework to incorporate expert preferences about unmeasured abstract properties into surrogate modeling.
We provide an efficient strategy that can also handle any incorrect/misleading expert bias in preferential judgments.
arXiv Detail & Related papers (2024-02-27T09:23:13Z) - Stage-Aware Learning for Dynamic Treatments [3.6923632650826486]
We propose a novel individualized learning method for dynamic treatment regimes.
By relaxing the restriction that the observed trajectory must be fully aligned with the optimal treatments, our approach substantially improves the sample efficiency and stability of IPWE-based methods.
arXiv Detail & Related papers (2023-10-30T06:35:31Z) - Efficient Real-world Testing of Causal Decision Making via Bayesian
Experimental Design for Contextual Optimisation [12.37745209793872]
We introduce a model-agnostic framework for gathering data to evaluate and improve contextual decision making.
Our method is used for the data-efficient evaluation of the regret of past treatment assignments.
arXiv Detail & Related papers (2022-07-12T01:20:11Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Policy Learning for Optimal Individualized Dose Intervals [3.9801611649762263]
We propose a new method to estimate such a policy.
We prove that our estimated policy is consistent, and its risk converges to that of the best-in-class policy at a root-nn rate.
arXiv Detail & Related papers (2022-02-24T17:59:20Z) - Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints [0.0]
We study estimation of an optimal dynamic treatment regime that guides the optimal treatment assignment for each individual at each stage based on their history.
The paper proposes two estimation methods: one solves the treatment assignment problem sequentially through backward induction, and the other solves the entire problem simultaneously across all stages.
arXiv Detail & Related papers (2021-06-09T12:42:53Z) - Online Active Model Selection for Pre-trained Classifiers [72.84853880948894]
We design an online selective sampling approach that actively selects informative examples to label and outputs the best model with high probability at any round.
Our algorithm can be used for online prediction tasks for both adversarial and streams.
arXiv Detail & Related papers (2020-10-19T19:53:15Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z) - Incorporating Expert Prior Knowledge into Experimental Design via
Posterior Sampling [58.56638141701966]
Experimenters can often acquire the knowledge about the location of the global optimum.
It is unknown how to incorporate the expert prior knowledge about the global optimum into Bayesian optimization.
An efficient Bayesian optimization approach has been proposed via posterior sampling on the posterior distribution of the global optimum.
arXiv Detail & Related papers (2020-02-26T01:57:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.