Comprehensive Evaluation of Matrix Factorization Models for Collaborative Filtering Recommender Systems
- URL: http://arxiv.org/abs/2410.17644v2
- Date: Fri, 25 Oct 2024 15:42:42 GMT
- Title: Comprehensive Evaluation of Matrix Factorization Models for Collaborative Filtering Recommender Systems
- Authors: Jesús Bobadilla, Jorge Dueñas-Lerín, Fernando Ortega, Abraham Gutierrez,
- Abstract summary: Matrix factorization models are the core of current commercial collaborative filtering Recommender Systems.
Tests have tested a variety of accuracy and beyond accuracy quality measures, including prediction, recommendation of ordered and unordered lists, novelty, and diversity.
- Score: 42.362388367152256
- License:
- Abstract: Matrix factorization models are the core of current commercial collaborative filtering Recommender Systems. This paper tested six representative matrix factorization models, using four collaborative filtering datasets. Experiments have tested a variety of accuracy and beyond accuracy quality measures, including prediction, recommendation of ordered and unordered lists, novelty, and diversity. Results show each convenient matrix factorization model attending to their simplicity, the required prediction quality, the necessary recommendation quality, the desired recommendation novelty and diversity, the need to explain recommendations, the adequacy of assigning semantic interpretations to hidden factors, the advisability of recommending to groups of users, and the need to obtain reliability values. To ensure the reproducibility of the experiments, an open framework has been used, and the implementation code is provided.
Related papers
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - LLM-enhanced Reranking in Recommender Systems [49.969932092129305]
Reranking is a critical component in recommender systems, playing an essential role in refining the output of recommendation algorithms.
We introduce a comprehensive reranking framework, designed to seamlessly integrate various reranking criteria.
A customizable input mechanism is also integrated, enabling the tuning of the language model's focus to meet specific reranking needs.
arXiv Detail & Related papers (2024-06-18T09:29:18Z) - CF Recommender System Based on Ontology and Nonnegative Matrix Factorization (NMF) [0.0]
This work is to address the recommender system's data sparsity and accuracy problems.
The implemented approach efficiently reduces the sparsity of CF suggestions, improves their accuracy, and gives more relevant items as recommendations.
arXiv Detail & Related papers (2024-05-31T14:50:53Z) - Diversely Regularized Matrix Factorization for Accurate and Aggregately
Diversified Recommendation [15.483426620593013]
DivMF (Diversely Regularized Matrix Factorization) is a novel matrix factorization method for aggregately diversified recommendation.
We show that DivMF achieves the state-of-the-art performance in aggregately diversified recommendation.
arXiv Detail & Related papers (2022-10-19T08:49:39Z) - Restricted Bernoulli Matrix Factorization: Balancing the trade-off
between prediction accuracy and coverage in classification based
collaborative filtering [45.335821132209766]
We propose Restricted Bernoulli Matrix Factorization (ResBeMF) to enhance the performance of classification-based collaborative filtering.
The proposed model provides a good balance in terms of the quality measures used compared to other recommendation models.
arXiv Detail & Related papers (2022-10-05T13:48:19Z) - Introducing a Framework and a Decision Protocol to Calibrate Recommender
Systems [0.0]
This paper proposes an approach to create recommendation lists with a calibrated balance of genres.
The main claim is that calibration can contribute positively to generate fairer recommendations.
We propose a conceptual framework and a decision protocol to generate more than one thousand combinations of calibrated systems.
arXiv Detail & Related papers (2022-04-07T19:30:55Z) - Latent Unexpected Recommendations [89.2011481379093]
We propose to model unexpectedness in the latent space of user and item embeddings, which allows to capture hidden and complex relations between new recommendations and historic purchases.
In addition, we develop a novel Latent Closure (LC) method to construct hybrid utility function and provide unexpected recommendations based on the proposed model.
arXiv Detail & Related papers (2020-07-27T02:39:30Z) - Towards Open-World Recommendation: An Inductive Model-based
Collaborative Filtering Approach [115.76667128325361]
Recommendation models can effectively estimate underlying user interests and predict one's future behaviors.
We propose an inductive collaborative filtering framework that contains two representation models.
Our model achieves promising results for recommendation on few-shot users with limited training ratings and new unseen users.
arXiv Detail & Related papers (2020-07-09T14:31:25Z) - Providing reliability in Recommender Systems through Bernoulli Matrix
Factorization [63.732639864601914]
This paper proposes Bernoulli Matrix Factorization (BeMF) to provide both prediction values and reliability values.
BeMF acts on model-based collaborative filtering rather than on memory-based filtering.
The more reliable a prediction is, the less liable it is to be wrong.
arXiv Detail & Related papers (2020-06-05T14:24:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.