論文の概要: AutoRNet: Automatically Optimizing Heuristics for Robust Network Design via Large Language Models
- arxiv url: http://arxiv.org/abs/2410.17656v1
- Date: Wed, 23 Oct 2024 08:18:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:56:05.448106
- Title: AutoRNet: Automatically Optimizing Heuristics for Robust Network Design via Large Language Models
- Title(参考訳): AutoRNet: 大規模言語モデルによるロバストネットワーク設計のためのヒューリスティックの自動最適化
- Authors: He Yu, Jing Liu,
- Abstract要約: AutoRNetは、大規模な言語モデルと進化的アルゴリズムを統合して堅牢なネットワークを生成するフレームワークである。
次数分布を維持しながら収束と多様性のバランスをとる適応適合度関数を導入する。
AutoRNetはスパースで高密度なスケールフリーネットワークで評価される。
- 参考スコア(独自算出の注目度): 3.833708891059351
- License:
- Abstract: Achieving robust networks is a challenging problem due to its NP-hard nature and complex solution space. Current methods, from handcrafted feature extraction to deep learning, have made progress but remain rigid, requiring manual design and large labeled datasets. To address these issues, we propose AutoRNet, a framework that integrates large language models (LLMs) with evolutionary algorithms to generate heuristics for robust network design. We design network optimization strategies to provide domain-specific prompts for LLMs, utilizing domain knowledge to generate advanced heuristics. Additionally, we introduce an adaptive fitness function to balance convergence and diversity while maintaining degree distributions. AutoRNet is evaluated on sparse and dense scale-free networks, outperforming current methods by reducing the need for manual design and large datasets.
- Abstract(参考訳): 堅牢なネットワークを実現することは、NPハードな性質と複雑な解空間のために難しい問題である。
手作業による特徴抽出からディープラーニングに至るまで、現在の手法は進歩しているが、手作業による設計と大規模なラベル付きデータセットを必要としている。
これらの問題に対処するために,大規模言語モデル(LLM)と進化的アルゴリズムを統合し,堅牢なネットワーク設計のためのヒューリスティックを生成するフレームワークであるAutoRNetを提案する。
我々はLLMに対してドメイン固有のプロンプトを提供するためにネットワーク最適化戦略を設計し、ドメイン知識を活用して高度なヒューリスティックスを生成する。
さらに、次数分布を維持しながら収束と多様性のバランスをとる適応適合度関数を導入する。
AutoRNetはスパースで高密度なスケールフリーネットワークで評価されており、手動設計や大規模なデータセットの必要性を減らし、現在の手法よりも優れている。
関連論文リスト
- DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - NetLLM: Adapting Large Language Models for Networking [36.61572542761661]
我々は,ネットワーク問題を解決するために低努力でLLMの強力な能力を活用するためのコヒーレントな設計を提供する最初のフレームワークであるNetLLMを紹介する。
具体的には、NetLLMはLLMにネットワーク上のマルチモーダルデータを効果的に処理し、タスク固有の回答を効率的に生成する権限を与える。
論文 参考訳(メタデータ) (2024-02-04T04:21:34Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - RDRN: Recursively Defined Residual Network for Image Super-Resolution [58.64907136562178]
深部畳み込みニューラルネットワーク(CNN)は、単一画像超解像において顕著な性能を得た。
本稿では,注目ブロックを効率的に活用する新しいネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-11-17T11:06:29Z) - FreeREA: Training-Free Evolution-based Architecture Search [17.202375422110553]
FreeREAは、トレーニングなしメトリクスの最適化組み合わせを利用してアーキテクチャをランク付けする、独自のセルベースの進化NASアルゴリズムである。
本実験はNAS-Bench-101とNATS-Benchの共通ベンチマークを用いて,フリーレアがモデル自動設計のための高速で効率的かつ効果的な探索手法であることを実証した。
論文 参考訳(メタデータ) (2022-06-17T11:16:28Z) - Applying Graph-based Deep Learning To Realistic Network Scenarios [5.453745629140304]
本稿では,ネットワーク内のパスごとの平均遅延を正確に推定できるグラフベースの新しいディープラーニングモデルを提案する。
提案モデルでは,トレーニングフェーズ中に見つからないトポロジ,ルーティング構成,キュースケジューリングポリシ,トラフィック行列をうまく一般化することができる。
論文 参考訳(メタデータ) (2020-10-13T20:58:59Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z) - R-FORCE: Robust Learning for Random Recurrent Neural Networks [6.285241353736006]
RRNNのロバスト性を高めるためのロバストトレーニング手法を提案する。
FORCE学習アプローチは、目標学習の課題にも適用可能であることが示された。
実験の結果,R-FORCEはより広範囲のRRNNに対して,より安定かつ正確な目標学習を促進することが示唆された。
論文 参考訳(メタデータ) (2020-03-25T22:08:03Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。