論文の概要: Optimizing Load Scheduling in Power Grids Using Reinforcement Learning and Markov Decision Processes
- arxiv url: http://arxiv.org/abs/2410.17696v1
- Date: Wed, 23 Oct 2024 09:16:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:55:21.606023
- Title: Optimizing Load Scheduling in Power Grids Using Reinforcement Learning and Markov Decision Processes
- Title(参考訳): 強化学習とマルコフ決定プロセスを用いた電力グリッドの負荷スケジューリング最適化
- Authors: Dongwen Luo,
- Abstract要約: 本稿では,動的負荷スケジューリングの課題に対処する強化学習(RL)手法を提案する。
提案手法は実時間負荷スケジューリングのためのロバストでスケーラブルなソリューションを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Power grid load scheduling is a critical task that ensures the balance between electricity generation and consumption while minimizing operational costs and maintaining grid stability. Traditional optimization methods often struggle with the dynamic and stochastic nature of power systems, especially when faced with renewable energy sources and fluctuating demand. This paper proposes a reinforcement learning (RL) approach using a Markov Decision Process (MDP) framework to address the challenges of dynamic load scheduling. The MDP is defined by a state space representing grid conditions, an action space covering control operations like generator adjustments and storage management, and a reward function balancing economic efficiency and system reliability. We investigate the application of various RL algorithms, from basic Q-Learning to more advanced Deep Q-Networks (DQN) and Actor-Critic methods, to determine optimal scheduling policies. The proposed approach is evaluated through a simulated power grid environment, demonstrating its potential to improve scheduling efficiency and adapt to variable demand patterns. Our results show that the RL-based method provides a robust and scalable solution for real-time load scheduling, contributing to the efficient management of modern power grids.
- Abstract(参考訳): 電力グリッド負荷スケジューリングは、発電と消費のバランスを確保する上で重要なタスクであり、運用コストを最小化し、グリッド安定性を維持する。
従来の最適化手法は、電力システムの動的で確率的な性質、特に再生可能エネルギー源や変動する需要に直面している場合にしばしば苦労する。
本稿では,動的負荷スケジューリングの課題を解決するために,Markov Decision Process (MDP) フレームワークを用いた強化学習(RL)手法を提案する。
MDPは、グリッド条件を表す状態空間、発電機調整やストレージ管理などの制御操作をカバーする動作空間、経済効率とシステムの信頼性のバランスをとる報酬関数によって定義される。
本稿では,Q-LearningからDQN(Deep Q-Networks)やActor-Criticメソッドに至るまで,様々なRLアルゴリズムを適用し,最適スケジューリングポリシーを決定する。
提案手法は電力グリッドのシミュレーション環境を通じて評価され,スケジューリング効率の向上と変動需要パターンへの適応の可能性を示す。
提案手法は, リアルタイム負荷スケジューリングのためのロバストでスケーラブルな手法であり, 現代の電力網の効率的な管理に寄与することを示す。
関連論文リスト
- Reinforcement Learning-Based Adaptive Load Balancing for Dynamic Cloud Environments [0.0]
これらの課題に対処するために,Reinforcement Learning (RL) を用いた適応型ロードバランシングフレームワークを提案する。
我々のフレームワークは、タスクを動的に再配置し、レイテンシを最小化し、サーバ間のリソース利用のバランスを確保するように設計されています。
実験の結果,提案したRLベースのロードバランサは,応答時間,資源利用量,ワークロードの変化に対する適応性などの観点から,従来のアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2024-09-07T19:40:48Z) - Adaptive Dynamic Programming for Energy-Efficient Base Station Cell
Switching [19.520603265594108]
無線ネットワークの省エネは、次世代のセルネットワークの進化に対する需要が増大しているため、重要になっている。
本稿では,ネットワーク電力消費量を減らすために,オンライン最適化と併用して,基地局のセルをオン/オフする近似動的プログラミング(ADP)手法を提案する。
論文 参考訳(メタデータ) (2023-10-05T14:50:12Z) - A Constraint Enforcement Deep Reinforcement Learning Framework for
Optimal Energy Storage Systems Dispatch [0.0]
エネルギー貯蔵システム(ESS)の最適供給は、動的価格の変動、需要消費、再生可能エネルギーの発生による深刻な課題を提起する。
ディープニューラルネットワーク(DNN)の一般化機能を活用することで、ディープ強化学習(DRL)アルゴリズムは、分散ネットワークの性質に適応して応答する良質な制御モデルを学ぶことができる。
本稿では,オンライン操作における環境や行動空間の運用制約を厳格に実施しながら,継続的な行動空間を効果的に処理するDRLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-26T17:12:04Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
生成的人工知能の最近の進歩は、機械学習トレーニングの需要が急増し、エネルギー消費の大幅な増加によるコスト負担と環境問題を引き起こしている。
地理的に分散したクラウドデータセンタ間でのトレーニングジョブのスケジューリングは、安価で低炭素エネルギーのコンピューティング能力の使用を最適化する機会を浮き彫りにする。
本研究では,実生活におけるワークロードパターン,エネルギー価格,炭素強度を組み込んだクラウドシステムと対話することで,マルチエージェント強化学習とアクタクリティカルな手法に基づく最適協調スケジューリング戦略の学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-17T02:12:30Z) - Real-time scheduling of renewable power systems through planning-based
reinforcement learning [13.65517429683729]
再生可能エネルギー源は 従来の電力スケジューリングに 重大な課題をもたらしています
強化学習の新たな発展は、この問題を解く可能性を実証している。
我々は、最先端の強化学習アルゴリズムと実電力グリッド環境に基づく体系的なソリューションを最初に提案する。
論文 参考訳(メタデータ) (2023-03-09T12:19:20Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
本稿では、自律制御と再生可能エネルギー資源のスマート電力グリッドシステムへの統合のための多エージェント深層強化学習(DRL)フレームワークを提案する。
特に,提案フレームワークは,住宅利用者に対する需要応答 (DR) と分散エネルギー管理 (DEM) を共同で検討している。
論文 参考訳(メタデータ) (2022-11-29T01:18:58Z) - Stabilizing Voltage in Power Distribution Networks via Multi-Agent
Reinforcement Learning with Transformer [128.19212716007794]
本稿では,変圧器を用いたマルチエージェント・アクタ・クリティカル・フレームワーク(T-MAAC)を提案する。
さらに、電圧制御タスクに適した新しい補助タスクトレーニングプロセスを採用し、サンプル効率を向上する。
論文 参考訳(メタデータ) (2022-06-08T07:48:42Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
インテリジェント・リフレクション・サーフェス(IRS)は将来の無線ネットワークに広く応用されることが想定されている。
本稿では,エネルギー収穫能力を備えた協調型IRSデバイスを用いたマルチユーザ通信システムについて検討する。
論文 参考訳(メタデータ) (2022-03-26T20:37:14Z) - Non-stationary Online Learning with Memory and Non-stochastic Control [71.14503310914799]
我々は,過去の決定に依拠する損失関数を許容するメモリを用いたオンライン凸最適化(OCO)の問題について検討する。
本稿では,非定常環境に対してロバストなアルゴリズムを設計するための性能指標として,動的ポリシーの後悔を紹介する。
我々は,時間的地平線,非定常度,メモリ長といった面で,最適な動的ポリシーの後悔を確実に享受するメモリ付きOCOの新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-07T09:45:15Z) - Scheduling and Power Control for Wireless Multicast Systems via Deep
Reinforcement Learning [33.737301955006345]
無線システムにおけるマルチキャストは、コンテンツ中心ネットワークにおけるユーザ要求の冗長性を利用する方法である。
電力制御と最適スケジューリングは、衰退中の無線マルチキャストネットワークの性能を著しく向上させることができる。
提案手法により, 大規模システムに対して, 電力制御ポリシを学習可能であることを示す。
論文 参考訳(メタデータ) (2020-09-27T15:59:44Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。