Optimizing Load Scheduling in Power Grids Using Reinforcement Learning and Markov Decision Processes
- URL: http://arxiv.org/abs/2410.17696v1
- Date: Wed, 23 Oct 2024 09:16:22 GMT
- Title: Optimizing Load Scheduling in Power Grids Using Reinforcement Learning and Markov Decision Processes
- Authors: Dongwen Luo,
- Abstract summary: This paper proposes a reinforcement learning (RL) approach to address the challenges of dynamic load scheduling.
Our results show that the RL-based method provides a robust and scalable solution for real-time load scheduling.
- Score: 0.0
- License:
- Abstract: Power grid load scheduling is a critical task that ensures the balance between electricity generation and consumption while minimizing operational costs and maintaining grid stability. Traditional optimization methods often struggle with the dynamic and stochastic nature of power systems, especially when faced with renewable energy sources and fluctuating demand. This paper proposes a reinforcement learning (RL) approach using a Markov Decision Process (MDP) framework to address the challenges of dynamic load scheduling. The MDP is defined by a state space representing grid conditions, an action space covering control operations like generator adjustments and storage management, and a reward function balancing economic efficiency and system reliability. We investigate the application of various RL algorithms, from basic Q-Learning to more advanced Deep Q-Networks (DQN) and Actor-Critic methods, to determine optimal scheduling policies. The proposed approach is evaluated through a simulated power grid environment, demonstrating its potential to improve scheduling efficiency and adapt to variable demand patterns. Our results show that the RL-based method provides a robust and scalable solution for real-time load scheduling, contributing to the efficient management of modern power grids.
Related papers
- Reinforcement Learning-Based Adaptive Load Balancing for Dynamic Cloud Environments [0.0]
We propose a novel adaptive load balancing framework using Reinforcement Learning (RL) to address these challenges.
Our framework is designed to dynamically reallocate tasks to minimize latency and ensure balanced resource usage across servers.
Experimental results show that the proposed RL-based load balancer outperforms traditional algorithms in terms of response time, resource utilization, and adaptability to changing workloads.
arXiv Detail & Related papers (2024-09-07T19:40:48Z) - Adaptive Dynamic Programming for Energy-Efficient Base Station Cell
Switching [19.520603265594108]
Energy saving in wireless networks is growing in importance due to increasing demand for evolving new-gen cellular networks.
We propose an approximate dynamic programming (ADP)-based method coupled with online optimization to switch on/off the cells of base stations to reduce network power consumption.
arXiv Detail & Related papers (2023-10-05T14:50:12Z) - A Constraint Enforcement Deep Reinforcement Learning Framework for
Optimal Energy Storage Systems Dispatch [0.0]
The optimal dispatch of energy storage systems (ESSs) presents formidable challenges due to fluctuations in dynamic prices, demand consumption, and renewable-based energy generation.
By exploiting the generalization capabilities of deep neural networks (DNNs), deep reinforcement learning (DRL) algorithms can learn good-quality control models that adaptively respond to distribution networks' nature.
We propose a DRL framework that effectively handles continuous action spaces while strictly enforcing the environments and action space operational constraints during online operation.
arXiv Detail & Related papers (2023-07-26T17:12:04Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
Recent breakthroughs in generative artificial intelligence have triggered a surge in demand for machine learning training, which poses significant cost burdens and environmental challenges due to its substantial energy consumption.
Scheduling training jobs among geographically distributed cloud data centers unveils the opportunity to optimize the usage of computing capacity powered by inexpensive and low-carbon energy.
We propose an algorithm based on multi-agent reinforcement learning and actor-critic methods to learn the optimal collaborative scheduling strategy through interacting with a cloud system built with real-life workload patterns, energy prices, and carbon intensities.
arXiv Detail & Related papers (2023-04-17T02:12:30Z) - Real-time scheduling of renewable power systems through planning-based
reinforcement learning [13.65517429683729]
renewable energy sources have posed significant challenges to traditional power scheduling.
New developments in reinforcement learning have demonstrated the potential to solve this problem.
We are the first to propose a systematic solution based on the state-of-the-art reinforcement learning algorithm and the real power grid environment.
arXiv Detail & Related papers (2023-03-09T12:19:20Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Stabilizing Voltage in Power Distribution Networks via Multi-Agent
Reinforcement Learning with Transformer [128.19212716007794]
We propose a Transformer-based Multi-Agent Actor-Critic framework (T-MAAC) to stabilize voltage in power distribution networks.
In addition, we adopt a novel auxiliary-task training process tailored to the voltage control task, which improves the sample efficiency.
arXiv Detail & Related papers (2022-06-08T07:48:42Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - Non-stationary Online Learning with Memory and Non-stochastic Control [71.14503310914799]
We study the problem of Online Convex Optimization (OCO) with memory, which allows loss functions to depend on past decisions.
In this paper, we introduce dynamic policy regret as the performance measure to design algorithms robust to non-stationary environments.
We propose a novel algorithm for OCO with memory that provably enjoys an optimal dynamic policy regret in terms of time horizon, non-stationarity measure, and memory length.
arXiv Detail & Related papers (2021-02-07T09:45:15Z) - Scheduling and Power Control for Wireless Multicast Systems via Deep
Reinforcement Learning [33.737301955006345]
Multicasting in wireless systems is a way to exploit the redundancy in user requests in a Content Centric Network.
Power control and optimal scheduling can significantly improve the wireless multicast network's performance under fading.
We show that power control policy can be learnt for reasonably large systems via this approach.
arXiv Detail & Related papers (2020-09-27T15:59:44Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.