Reinforcement Learning-Based Adaptive Load Balancing for Dynamic Cloud Environments
- URL: http://arxiv.org/abs/2409.04896v1
- Date: Sat, 7 Sep 2024 19:40:48 GMT
- Title: Reinforcement Learning-Based Adaptive Load Balancing for Dynamic Cloud Environments
- Authors: Kavish Chawla,
- Abstract summary: We propose a novel adaptive load balancing framework using Reinforcement Learning (RL) to address these challenges.
Our framework is designed to dynamically reallocate tasks to minimize latency and ensure balanced resource usage across servers.
Experimental results show that the proposed RL-based load balancer outperforms traditional algorithms in terms of response time, resource utilization, and adaptability to changing workloads.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Efficient load balancing is crucial in cloud computing environments to ensure optimal resource utilization, minimize response times, and prevent server overload. Traditional load balancing algorithms, such as round-robin or least connections, are often static and unable to adapt to the dynamic and fluctuating nature of cloud workloads. In this paper, we propose a novel adaptive load balancing framework using Reinforcement Learning (RL) to address these challenges. The RL-based approach continuously learns and improves the distribution of tasks by observing real-time system performance and making decisions based on traffic patterns and resource availability. Our framework is designed to dynamically reallocate tasks to minimize latency and ensure balanced resource usage across servers. Experimental results show that the proposed RL-based load balancer outperforms traditional algorithms in terms of response time, resource utilization, and adaptability to changing workloads. These findings highlight the potential of AI-driven solutions for enhancing the efficiency and scalability of cloud infrastructures.
Related papers
- Scalability Optimization in Cloud-Based AI Inference Services: Strategies for Real-Time Load Balancing and Automated Scaling [1.3689475854650441]
This study proposes a comprehensive scalability optimization framework for cloud AI inference services.
The proposed model is a hybrid approach that combines reinforcement learning for adaptive load distribution and deep neural networks for accurate demand forecasting.
Experimental results demonstrate that the proposed model enhances load balancing efficiency by 35 and reduces response delay by 28.
arXiv Detail & Related papers (2025-04-16T04:00:04Z) - Network Resource Optimization for ML-Based UAV Condition Monitoring with Vibration Analysis [54.550658461477106]
Condition Monitoring (CM) uses Machine Learning (ML) models to identify abnormal and adverse conditions.
This work explores the optimization of network resources for ML-based UAV CM frameworks.
By leveraging dimensionality reduction techniques, there is a 99.9% reduction in network resource consumption.
arXiv Detail & Related papers (2025-02-21T14:36:12Z) - Deep Reinforcement Learning for Job Scheduling and Resource Management in Cloud Computing: An Algorithm-Level Review [10.015735252600793]
Deep Reinforcement Learning (DRL) has emerged as a promising solution to these challenges.
DRL enables systems to learn and adapt policies based on continuous observations of the environment.
This survey provides a comprehensive review of DRL-based algorithms for job scheduling and resource management in cloud computing.
arXiv Detail & Related papers (2025-01-02T02:08:00Z) - Dynamic Scheduling Strategies for Resource Optimization in Computing Environments [0.29008108937701327]
This paper proposes a container scheduling method based on multi-objective optimization, which aims to balance key performance indicators such as resource utilization, load balancing and task completion efficiency.
The experimental results show that compared with traditional static rule algorithms and efficiency algorithms, the optimized scheduling scheme shows significant advantages in resource utilization, load balancing and burst task completion.
arXiv Detail & Related papers (2024-12-23T05:43:17Z) - Reinforcement Learning for Adaptive Resource Scheduling in Complex System Environments [8.315191578007857]
This study presents a novel computer system performance optimization and adaptive workload management scheduling algorithm based on Q-learning.
By contrast, Q-learning, a reinforcement learning algorithm, continuously learns from system state changes, enabling dynamic scheduling and resource optimization.
This research provides a foundation for the integration of AI-driven adaptive scheduling in future large-scale systems, offering a scalable, intelligent solution to enhance system performance, reduce operating costs, and support sustainable energy consumption.
arXiv Detail & Related papers (2024-11-08T05:58:09Z) - Optimizing Load Scheduling in Power Grids Using Reinforcement Learning and Markov Decision Processes [0.0]
This paper proposes a reinforcement learning (RL) approach to address the challenges of dynamic load scheduling.
Our results show that the RL-based method provides a robust and scalable solution for real-time load scheduling.
arXiv Detail & Related papers (2024-10-23T09:16:22Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Energy-Efficient Federated Edge Learning with Streaming Data: A Lyapunov Optimization Approach [34.00679567444125]
We develop a dynamic scheduling and resource allocation algorithm to address the inherent randomness in data arrivals and resource availability under long-term energy constraints.
Our proposed algorithm makes adaptive decisions on device scheduling, computational capacity adjustment, and allocation of bandwidth and transmit power in every round.
The effectiveness of our scheme is verified through simulation results, demonstrating improved learning performance and energy efficiency as compared to baseline schemes.
arXiv Detail & Related papers (2024-05-20T14:13:22Z) - Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
We propose a switchable decision to accelerate inference by dynamically assigning resources for each data instance.
Our method benefits from less cost during inference while keeping the same accuracy.
arXiv Detail & Related papers (2024-05-07T17:44:54Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with
Online Learning [60.17407932691429]
Open Radio Access Network systems, with their base stations (vBSs), offer operators the benefits of increased flexibility, reduced costs, vendor diversity, and interoperability.
We propose an online learning algorithm that balances the effective throughput and vBS energy consumption, even under unforeseeable and "challenging'' environments.
We prove the proposed solutions achieve sub-linear regret, providing zero average optimality gap even in challenging environments.
arXiv Detail & Related papers (2023-09-04T17:30:21Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
We consider a Federated Edge Learning (FEEL) system where training data are randomly generated over time at a set of distributed edge devices with long-term energy constraints.
Due to limited communication resources and latency requirements, only a subset of devices is scheduled for participating in the local training process in every iteration.
arXiv Detail & Related papers (2023-05-02T07:41:16Z) - Actively Learning Costly Reward Functions for Reinforcement Learning [56.34005280792013]
We show that it is possible to train agents in complex real-world environments orders of magnitudes faster.
By enabling the application of reinforcement learning methods to new domains, we show that we can find interesting and non-trivial solutions.
arXiv Detail & Related papers (2022-11-23T19:17:20Z) - A Meta Reinforcement Learning Approach for Predictive Autoscaling in the
Cloud [10.970391043991363]
We propose an end-to-end predictive meta model-based RL algorithm, aiming to optimally allocate resource to maintain a stable CPU utilization level.
Our algorithm not only ensures the predictability and accuracy of the scaling strategy, but also enables the scaling decisions to adapt to the changing workloads with high sample efficiency.
arXiv Detail & Related papers (2022-05-31T13:54:04Z) - Dynamic Scheduling for Stochastic Edge-Cloud Computing Environments
using A3C learning and Residual Recurrent Neural Networks [30.61220416710614]
A-Advantage-Actor-Critic (A3C) learning is known to quickly adapt to dynamic scenarios with less data and Residual Recurrent Neural Network (R2N2) to quickly update model parameters.
We use the R2N2 architecture to capture a large number of host and task parameters together with temporal patterns to provide efficient scheduling decisions.
Experiments conducted on real-world data set show a significant improvement in terms of energy consumption, response time, ServiceLevelAgreement and running cost by 14.4%, 7.74%, 31.9%, and 4.64%, respectively.
arXiv Detail & Related papers (2020-09-01T13:36:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.