論文の概要: A Data-Driven Odyssey in Solar Vehicles
- arxiv url: http://arxiv.org/abs/2410.17712v1
- Date: Wed, 23 Oct 2024 09:39:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:56:05.019140
- Title: A Data-Driven Odyssey in Solar Vehicles
- Title(参考訳): 自動車におけるデータ駆動オデュッセイ
- Authors: Do Young Kim, Kyunghyun Kim, Gyeongseop Lee, Niloy Das, Seong-Woo Kim,
- Abstract要約: 本研究では,太陽光発電における長距離走行の理解を支援するシミュレータを提案する。
Google Mapsのデータと天気情報を利用することで、シミュレータは現実世界の運転条件を再現する。
- 参考スコア(独自算出の注目度): 9.56887549273956
- License:
- Abstract: Solar vehicles, which simultaneously produce and consume energy, require meticulous energy management. However, potential users often feel uncertain about their operation compared to conventional vehicles. This study presents a simulator designed to help users understand long-distance travel in solar vehicles and recognize the importance of proper energy management. By utilizing Google Maps data and weather information, the simulator replicates real-world driving conditions and provides a dashboard displaying vehicle status, updated hourly based on user-inputted speed. Users can explore various speed policy scenarios and receive recommendations for optimal driving strategies. The simulator's effectiveness was validated using the route of the World Solar Challenge (WSC). This research enables users to monitor energy dynamics before a journey, enhancing their understanding of energy management and informing appropriate speed decisions.
- Abstract(参考訳): 同時にエネルギーを生産し消費するソーラーカーは、精巧なエネルギー管理を必要とする。
しかし、潜在的な利用者は従来の車両と比較して運転について不確実感を抱くことが多い。
本研究では,太陽光発電における長距離走行の理解と適切なエネルギー管理の重要性の認識を支援するシミュレータを提案する。
Google Mapsのデータと天気情報を利用することで、シミュレータは現実世界の運転条件を再現し、ユーザの入力した速度に基づいて時間に更新された車両ステータスを表示するダッシュボードを提供する。
ユーザは、さまざまなスピードポリシーシナリオを探索し、最適な運転戦略の推奨を受け取ることができる。
このシミュレータの有効性は、世界太陽チャレンジ(WSC)のルートを用いて検証された。
本研究は、利用者が旅行前にエネルギー力学をモニタリングし、エネルギー管理の理解を高め、適切な速度決定を行うことを可能にする。
関連論文リスト
- A Scoping Review of Energy-Efficient Driving Behaviors and Applied
State-of-the-Art AI Methods [2.765388013062202]
エネルギー効率の良い運転行動や戦略に関する包括的な調査は行われていない。
多くの最先端AIモデルは、エコフレンドリーな運転スタイルの分析に応用されているが、概観は得られていない。
本稿では、生態的な運転行動とスタイルに関する詳細な文献レビューを行い、エネルギー消費に影響を与える運転要因について分析する。
論文 参考訳(メタデータ) (2024-03-04T13:57:34Z) - A Survey on Approximate Edge AI for Energy Efficient Autonomous Driving
Services [1.7794836351354006]
この調査は、接続された車両アプリケーション、車両通信、近似、エッジAI技術についてレビューし、比較する。
その焦点は、新しく提案された近似をカバーし、フレームワークを有効にすることでエネルギー効率を向上させることである。
この調査から得られた洞察とビジョンは、低消費電力およびメモリ制限されたシステム上での協調運転サービス開発に有用である。
論文 参考訳(メタデータ) (2023-04-13T15:41:42Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
車両混合現実(MR)メタバースでは、物理的実体と仮想実体の間の距離を克服することができる。
現実的なデータ収集と物理世界からの融合による大規模交通・運転シミュレーションは困難かつコストがかかる。
生成AIを利用して、無制限の条件付きトラフィックを合成し、シミュレーションでデータを駆動する自律運転アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-16T16:54:10Z) - Investigating the Spatiotemporal Charging Demand and Travel Behavior of
Electric Vehicles Using GPS Data: A Machine Learning Approach [1.160208922584163]
電気自動車(EV)は運転者の走行行動を変え、電力システムにかなりの電力需要をもたらす可能性がある。
電力需要はEVの走行行動に依存するため、日々の充電需要(CD)の予測は難しい課題となる。
本稿では,同市からのEVおよび従来のガソリン自動車のGPSデータを用いて,運転者の走行行動の変化について検討する。
論文 参考訳(メタデータ) (2022-02-28T23:11:30Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
データ駆動シミュレータは、ポリシー学習の駆動に高いデータ効率を約束する。
小さな基盤となるデータセットは、インタラクティブな運転を学ぶための興味深い、挑戦的なエッジケースを欠いていることが多い。
本研究では,ロバストな運転方針の学習に塗装されたアドカーを用いたシミュレーション手法を提案する。
論文 参考訳(メタデータ) (2021-11-23T20:14:02Z) - VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles [131.2240621036954]
VISTAはオープンソースのデータ駆動シミュレータで、複数のタイプのセンサーを自律走行車に組み込む。
高忠実で実世界のデータセットを使用して、VISTAはRGBカメラ、3D LiDAR、イベントベースのカメラを表現し、シミュレートする。
センサタイプ毎に知覚制御ポリシーをトレーニングし,テストする能力を示し,フルスケールの自律走行車への展開を通じて,このアプローチのパワーを示す。
論文 参考訳(メタデータ) (2021-11-23T18:58:10Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
画像表現とLiDAR表現を注目で統合する,新しいマルチモードフュージョントランスフォーマであるTransFuserを提案する。
本手法は, 衝突を76%低減しつつ, 最先端駆動性能を実現する。
論文 参考訳(メタデータ) (2021-04-19T11:48:13Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
センサシミュレーションは高価であり,領域ギャップが大きいため,センサシミュレーションに代わる方法を提案する。
我々は、自動運転車の知覚と予測システムの出力を直接シミュレートし、現実的な動き計画テストを可能にする。
論文 参考訳(メタデータ) (2020-08-13T17:20:02Z) - A Physics Model-Guided Online Bayesian Framework for Energy Management
of Extended Range Electric Delivery Vehicles [3.927161292818792]
本稿では、双方向の車両とクラウド接続を備えた配送車両において使用される、利用規則に基づくEMSを改善する。
物理モデルに基づくオンラインベイズフレームワークについて記述し,最終マイルのパッケージ配信に使用されるEREVの多数の使用済み駆動サンプルについて検証した。
実輸送155回の試験車両の燃料使用量の平均は12.8%減少した。
論文 参考訳(メタデータ) (2020-06-01T08:43:23Z) - Probabilistic End-to-End Vehicle Navigation in Complex Dynamic
Environments with Multimodal Sensor Fusion [16.018962965273495]
全日と全天候のナビゲーションは、自動運転にとって重要な機能である。
本稿では,カメラ,ライダー,レーダからの情報を利用して,触覚能力を備えた確率的運転モデルを提案する。
その結果,提案モデルがベースラインを上回り,目に見えない環境での優れた一般化性能を実現することが示唆された。
論文 参考訳(メタデータ) (2020-05-05T03:48:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。