AdaDiffSR: Adaptive Region-aware Dynamic Acceleration Diffusion Model for Real-World Image Super-Resolution
- URL: http://arxiv.org/abs/2410.17752v1
- Date: Wed, 23 Oct 2024 10:29:18 GMT
- Title: AdaDiffSR: Adaptive Region-aware Dynamic Acceleration Diffusion Model for Real-World Image Super-Resolution
- Authors: Yuanting Fan, Chengxu Liu, Nengzhong Yin, Changlong Gao, Xueming Qian,
- Abstract summary: Diffusion models (DMs) have shown promising results on single-image super-resolution and other image-to-image translation tasks.
We propose AdaDiffSR, a DMs-based super-resolution pipeline with dynamic timesteps sampling strategy (DTSS)
Our experiments show that our AdaDiffSR achieves comparable performance over current state-of-the-art DMs-based SR methods.
- Score: 14.2500092850787
- License:
- Abstract: Diffusion models (DMs) have shown promising results on single-image super-resolution and other image-to-image translation tasks. Benefiting from more computational resources and longer inference times, they are able to yield more realistic images. Existing DMs-based super-resolution methods try to achieve an overall average recovery over all regions via iterative refinement, ignoring the consideration that different input image regions require different timesteps to reconstruct. In this work, we notice that previous DMs-based super-resolution methods suffer from wasting computational resources to reconstruct invisible details. To further improve the utilization of computational resources, we propose AdaDiffSR, a DMs-based SR pipeline with dynamic timesteps sampling strategy (DTSS). Specifically, by introducing the multi-metrics latent entropy module (MMLE), we can achieve dynamic perception of the latent spatial information gain during the denoising process, thereby guiding the dynamic selection of the timesteps. In addition, we adopt a progressive feature injection module (PFJ), which dynamically injects the original image features into the denoising process based on the current information gain, so as to generate images with both fidelity and realism. Experiments show that our AdaDiffSR achieves comparable performance over current state-of-the-art DMs-based SR methods while consuming less computational resources and inference time on both synthetic and real-world datasets.
Related papers
- Binarized Diffusion Model for Image Super-Resolution [61.963833405167875]
Binarization, an ultra-compression algorithm, offers the potential for effectively accelerating advanced diffusion models (DMs)
Existing binarization methods result in significant performance degradation.
We introduce a novel binarized diffusion model, BI-DiffSR, for image SR.
arXiv Detail & Related papers (2024-06-09T10:30:25Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Implicit Diffusion Models for Continuous Super-Resolution [65.45848137914592]
This paper introduces an Implicit Diffusion Model (IDM) for high-fidelity continuous image super-resolution.
IDM integrates an implicit neural representation and a denoising diffusion model in a unified end-to-end framework.
The scaling factor regulates the resolution and accordingly modulates the proportion of the LR information and generated features in the final output.
arXiv Detail & Related papers (2023-03-29T07:02:20Z) - Super-resolution Reconstruction of Single Image for Latent features [8.857209365343646]
Single-image super-resolution (SISR) typically focuses on restoring various degraded low-resolution (LR) images to a single high-resolution (HR) image.
It is often challenging for models to simultaneously maintain high quality and rapid sampling while preserving diversity in details and texture features.
This challenge can lead to issues such as model collapse, lack of rich details and texture features in the reconstructed HR images, and excessive time consumption for model sampling.
arXiv Detail & Related papers (2022-11-16T09:37:07Z) - Real-World Image Super-Resolution by Exclusionary Dual-Learning [98.36096041099906]
Real-world image super-resolution is a practical image restoration problem that aims to obtain high-quality images from in-the-wild input.
Deep learning-based methods have achieved promising restoration quality on real-world image super-resolution datasets.
We propose Real-World image Super-Resolution by Exclusionary Dual-Learning (RWSR-EDL) to address the feature diversity in perceptual- and L1-based cooperative learning.
arXiv Detail & Related papers (2022-06-06T13:28:15Z) - SUMD: Super U-shaped Matrix Decomposition Convolutional neural network
for Image denoising [0.0]
We introduce the matrix decomposition module(MD) in the network to establish the global context feature.
Inspired by the design of multi-stage progressive restoration of U-shaped architecture, we further integrate the MD module into the multi-branches.
Our model(SUMD) can produce comparable visual quality and accuracy results with Transformer-based methods.
arXiv Detail & Related papers (2022-04-11T04:38:34Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.