Puncturing Quantum Stabilizer Codes
- URL: http://arxiv.org/abs/2410.17754v2
- Date: Thu, 21 Nov 2024 13:48:15 GMT
- Title: Puncturing Quantum Stabilizer Codes
- Authors: Jaron Skovsted Gundersen, René Bødker Christensen, Markus Grassl, Petar Popovski, Rafał Wisniewski,
- Abstract summary: We generalize the puncturing procedure to allow more freedom in the choice of which coded states are kept and which are removed.
We present several ways to utilize this for the search of codes with good or even optimal parameters.
- Score: 28.796017729194713
- License:
- Abstract: Classical coding theory contains several techniques to obtain new codes from other codes, including puncturing and shortening. For quantum codes, a form of puncturing is known, but its description is based on the code space rather than its generators. In this work, we generalize the puncturing procedure to allow more freedom in the choice of which coded states are kept and which are removed. We describe this puncturing by focusing on the stabilizer matrix containing the generators of the code. In this way, we are able to explicitly describe the stabilizer matrix of the punctured code given the stabilizer matrix of the original stabilizer code. The additional freedom in the procedure also opens up new ways to construct new codes from old, and we present several ways to utilize this for the search of codes with good or even optimal parameters. In particular, we use the construction to obtain codes whose parameters exceed the best previously known. Lastly, we generalize the proof of the Griesmer bound from the classical setting to stabilizer codes since the proof relies heavily on the puncturing technique.
Related papers
- Threshold Selection for Iterative Decoding of $(v,w)$-regular Binary Codes [84.0257274213152]
Iterative bit flipping decoders are an efficient choice for sparse $(v,w)$-regular codes.
We propose concrete criteria for threshold determination, backed by a closed form model.
arXiv Detail & Related papers (2025-01-23T17:38:22Z) - Decoding Quasi-Cyclic Quantum LDPC Codes [23.22566380210149]
Quantum low-density parity-check (qLDPC) codes are an important component in the quest for fault tolerance.
Recent progress on qLDPC codes has led to constructions which are quantumally good, and which admit linear-time decoders to correct errors affecting a constant fraction of codeword qubits.
In practice, the surface/toric codes, which are the product of two repetition codes, are still often the qLDPC codes of choice.
arXiv Detail & Related papers (2024-11-07T06:25:27Z) - List Decodable Quantum LDPC Codes [49.2205789216734]
We give a construction of Quantum Low-Density Parity Check (QLDPC) codes with near-optimal rate-distance tradeoff.
We get efficiently list decodable QLDPC codes with unique decoders.
arXiv Detail & Related papers (2024-11-06T23:08:55Z) - Learning Linear Block Error Correction Codes [62.25533750469467]
We propose for the first time a unified encoder-decoder training of binary linear block codes.
We also propose a novel Transformer model in which the self-attention masking is performed in a differentiable fashion for the efficient backpropagation of the code gradient.
arXiv Detail & Related papers (2024-05-07T06:47:12Z) - Quotient Space Quantum Codes [0.0]
In this paper, I establish the quotient space codes to construct quantum codes.
These new codes unify additive codes and codeword stabilized codes and can transmit classical codewords.
I also present new bounds for quantum codes and provide a simple proof of the quantum Singleton bound.
arXiv Detail & Related papers (2023-11-13T12:03:59Z) - Homological Quantum Rotor Codes: Logical Qubits from Torsion [47.52324012811181]
homological quantum rotor codes allow one to encode both logical rotors and logical qudits in the same block of code.
We show that the $0$-$pi$-qubit as well as Kitaev's current-mirror qubit are indeed small examples of such codes.
arXiv Detail & Related papers (2023-03-24T00:29:15Z) - Quantum spherical codes [55.33545082776197]
We introduce a framework for constructing quantum codes defined on spheres by recasting such codes as quantum analogues of the classical spherical codes.
We apply this framework to bosonic coding, obtaining multimode extensions of the cat codes that can outperform previous constructions.
arXiv Detail & Related papers (2023-02-22T19:00:11Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Qubit-oscillator concatenated codes: decoding formalism & code
comparison [1.8759305308855916]
Concatenating bosonic error-correcting codes with qubit codes can substantially boost the error-correcting power of the original qubit codes.
GKP-stabilizer codes allow protection of a logical bosonic mode from fluctuations of the mode's conjugate variables.
We develop efficient maximum-likelihood decoders for and analyze the performance of three different concatenations of codes.
arXiv Detail & Related papers (2022-09-10T02:30:15Z) - Grand Unification of continuous-variable codes [0.0]
Quantum error correction codes in continuous variables (also called CV codes, or single-mode bosonic codes) have been identified to be a technologically viable option for building fault-tolerant quantum computers.
Best-known examples are the GKP code and the cat-code, both of which were shown to have some advantageous properties over any discrete-variable, or qubit codes.
It was recently shown that the cat-code, as well as other kinds of CV codes, belong to a set of codes with common properties called rotation-symmetric codes.
arXiv Detail & Related papers (2022-06-03T18:00:01Z) - Modifying method of constructing quantum codes from highly entangled
states [0.0]
We provide explicit constructions for codewords, encoding procedure and stabilizer formalism of the QECCs.
We modify the method to produce another set of stabilizer QECCs that encode a logical qudit into a subspace spanned by AME states.
arXiv Detail & Related papers (2020-05-04T12:28:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.