Learning Linear Block Error Correction Codes
- URL: http://arxiv.org/abs/2405.04050v1
- Date: Tue, 7 May 2024 06:47:12 GMT
- Title: Learning Linear Block Error Correction Codes
- Authors: Yoni Choukroun, Lior Wolf,
- Abstract summary: We propose for the first time a unified encoder-decoder training of binary linear block codes.
We also propose a novel Transformer model in which the self-attention masking is performed in a differentiable fashion for the efficient backpropagation of the code gradient.
- Score: 62.25533750469467
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Error correction codes are a crucial part of the physical communication layer, ensuring the reliable transfer of data over noisy channels. The design of optimal linear block codes capable of being efficiently decoded is of major concern, especially for short block lengths. While neural decoders have recently demonstrated their advantage over classical decoding techniques, the neural design of the codes remains a challenge. In this work, we propose for the first time a unified encoder-decoder training of binary linear block codes. To this end, we adapt the coding setting to support efficient and differentiable training of the code for end-to-end optimization over the order two Galois field. We also propose a novel Transformer model in which the self-attention masking is performed in a differentiable fashion for the efficient backpropagation of the code gradient. Our results show that (i) the proposed decoder outperforms existing neural decoding on conventional codes, (ii) the suggested framework generates codes that outperform the {analogous} conventional codes, and (iii) the codes we developed not only excel with our decoder but also show enhanced performance with traditional decoding techniques.
Related papers
- Threshold Selection for Iterative Decoding of $(v,w)$-regular Binary Codes [84.0257274213152]
Iterative bit flipping decoders are an efficient choice for sparse $(v,w)$-regular codes.
We propose concrete criteria for threshold determination, backed by a closed form model.
arXiv Detail & Related papers (2025-01-23T17:38:22Z) - GNN-based Auto-Encoder for Short Linear Block Codes: A DRL Approach [43.17241175857862]
It integrates deep reinforcement learning (DRL) and graph neural networks (GNN) in code design.
An edge-weighted GNN (EW-GNN) decoder is proposed, which operates on the Tanner graph with an iterative message-passing structure.
An iterative joint training of the DRL-based code designer and the EW-GNN decoder is performed to optimize the end-end encoding and decoding process.
arXiv Detail & Related papers (2024-12-03T00:25:14Z) - Factor Graph Optimization of Error-Correcting Codes for Belief Propagation Decoding [62.25533750469467]
Low-Density Parity-Check (LDPC) codes possess several advantages over other families of codes.
The proposed approach is shown to outperform the decoding performance of existing popular codes by orders of magnitude.
arXiv Detail & Related papers (2024-06-09T12:08:56Z) - Coding for Gaussian Two-Way Channels: Linear and Learning-Based
Approaches [28.98777190628006]
We propose two different two-way coding strategies: linear coding and learning-based coding.
For learning-based coding, we introduce a novel recurrent neural network (RNN)-based coding architecture.
Our two-way coding methodologies outperform conventional channel coding schemes significantly in sum-error performance.
arXiv Detail & Related papers (2023-12-31T12:40:18Z) - Denoising Diffusion Error Correction Codes [92.10654749898927]
Recently, neural decoders have demonstrated their advantage over classical decoding techniques.
Recent state-of-the-art neural decoders suffer from high complexity and lack the important iterative scheme characteristic of many legacy decoders.
We propose to employ denoising diffusion models for the soft decoding of linear codes at arbitrary block lengths.
arXiv Detail & Related papers (2022-09-16T11:00:50Z) - Error Correction Code Transformer [92.10654749898927]
We propose to extend for the first time the Transformer architecture to the soft decoding of linear codes at arbitrary block lengths.
We encode each channel's output dimension to high dimension for better representation of the bits information to be processed separately.
The proposed approach demonstrates the extreme power and flexibility of Transformers and outperforms existing state-of-the-art neural decoders by large margins at a fraction of their time complexity.
arXiv Detail & Related papers (2022-03-27T15:25:58Z) - Adversarial Neural Networks for Error Correcting Codes [76.70040964453638]
We introduce a general framework to boost the performance and applicability of machine learning (ML) models.
We propose to combine ML decoders with a competing discriminator network that tries to distinguish between codewords and noisy words.
Our framework is game-theoretic, motivated by generative adversarial networks (GANs)
arXiv Detail & Related papers (2021-12-21T19:14:44Z) - perm2vec: Graph Permutation Selection for Decoding of Error Correction
Codes using Self-Attention [19.879263834757758]
We present a data-driven framework for permutation selection, combining domain knowledge with machine learning concepts.
This work is the first to leverage the benefits of the neural Transformer networks in physical layer communication systems.
arXiv Detail & Related papers (2020-02-06T15:42:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.