Subsystem Evolution Speed as Indicator of Relaxation
- URL: http://arxiv.org/abs/2410.17798v1
- Date: Wed, 23 Oct 2024 11:58:34 GMT
- Title: Subsystem Evolution Speed as Indicator of Relaxation
- Authors: Jiaju Zhang, M. A. Rajabpour, Markus Heyl, Reyhaneh Khasseh,
- Abstract summary: We introduce an alternative method that assesses relaxation directly from the time-dependent state by focusing on the evolution speed of the subsystem.
We demonstrate that in systems reaching relaxation, as the overall system size increases, the evolution speed of sufficiently small yet still finite-sized subsystems notably diminishes.
- Score: 0.05999777817331316
- License:
- Abstract: In studying the time evolution of isolated many-body quantum systems, a key focus is determining whether the system undergoes relaxation and reaches a steady state at a given point in time. Traditional approaches often rely on specific local operators or a detailed understanding of the stationary state. In this letter, we introduce an alternative method that assesses relaxation directly from the time-dependent state by focusing on the evolution speed of the subsystem. The proposed indicator evaluates the rate of change in the reduced density matrix of the subsystem over time. We demonstrate that in systems reaching relaxation, as the overall system size increases, the evolution speed of sufficiently small yet still finite-sized subsystems notably diminishes. This leads to small fluctuations in the expectation values of operators, which is also consistent with the predictions made by the eigenstate thermalization hypothesis. We apply this approach across various models, including the chaotic Ising chain, XXZ chains with and without many-body localization, and the transverse field Ising chain. Our results confirm the robustness and accuracy of subsystem evolution speed as a reliable indicator for relaxation.
Related papers
- Thermalization Dynamics in Closed Quantum Many Body Systems: a Precision Large Scale Exact Diagonalization Study [0.0]
We study the finite-size deviation between the resulting equilibrium state and the thermal state.
We find that the deviations are well described by the eigenstate thermalization hypothesis.
We also find that local observables relax towards equilibrium exponentially with a relaxation time scale that grows linearly with system length.
arXiv Detail & Related papers (2024-09-27T15:58:05Z) - Machine learning in and out of equilibrium [58.88325379746631]
Our study uses a Fokker-Planck approach, adapted from statistical physics, to explore these parallels.
We focus in particular on the stationary state of the system in the long-time limit, which in conventional SGD is out of equilibrium.
We propose a new variation of Langevin dynamics (SGLD) that harnesses without replacement minibatching.
arXiv Detail & Related papers (2023-06-06T09:12:49Z) - Sinkhorn-Flow: Predicting Probability Mass Flow in Dynamical Systems
Using Optimal Transport [89.61692654941106]
We propose a new approach to predicting such mass flow over time using optimal transport.
We apply our approach to the task of predicting how communities will evolve over time in social network settings.
arXiv Detail & Related papers (2023-03-14T07:25:44Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Unveiling non-Markovian spacetime signalling in open quantum systems
with long-range tensor network dynamics [0.0]
We use a Matrix Product State representation of the quantum state of a system and its environment to keep track of the bath explicitly.
We predict a non-Markovian dynamics where long-range couplings induce correlations into the environment.
The environment dynamics can be naturally extracted from our method and shine a light on long time feedback effects that are responsible for the observed non-Markovian recurrences in the eigen-populations of the system.
arXiv Detail & Related papers (2021-07-23T13:28:08Z) - Detecting ergodic bubbles at the crossover to many-body localization
using neural networks [0.0]
We propose an algorithm that allows to detect the ergodic bubbles using experimentally measurable two-site correlation functions.
Our results open new pathways in studies of the mechanisms of thermalization of disordered many-body systems and beyond.
arXiv Detail & Related papers (2021-06-03T13:03:36Z) - Copycat process in the early stages of einselection [0.0]
We identify and describe unique early time behavior of a quantum system initially in a superposition.
This behavior occurs after the system begins to decohere, but before complete einselection.
arXiv Detail & Related papers (2021-05-28T18:02:37Z) - Bridging the Gap Between the Transient and the Steady State of a
Nonequilibrium Quantum System [58.720142291102135]
Many-body quantum systems in nonequilibrium remain one of the frontiers of many-body physics.
Recent work on strongly correlated electrons in DC electric fields illustrated that the system may evolve through successive quasi-thermal states.
We demonstrate an extrapolation scheme that uses the short-time transient calculation to obtain the retarded quantities.
arXiv Detail & Related papers (2021-01-04T06:23:01Z) - Signatures of bath-induced quantum avalanches in a many-body--localized
system [47.187609203210705]
Quantum avalanches occur when the system is locally coupled to a small thermal inclusion that acts as a bath.
We realize an interface between a many-body--localized system and a thermal inclusion of variable size, and study its dynamics.
arXiv Detail & Related papers (2020-12-30T18:34:34Z) - Bistability and time crystals in long-ranged directed percolation [0.0]
We propose a simple cellular automaton with power-law interactions that gives rise to a bistable phase of long-ranged directed percolation.
Our work thus provides a firm example of a classical discrete time crystal phase of matter.
arXiv Detail & Related papers (2020-04-27T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.