Optimal Streaming Algorithms for Multi-Armed Bandits
- URL: http://arxiv.org/abs/2410.17835v1
- Date: Wed, 23 Oct 2024 12:54:04 GMT
- Title: Optimal Streaming Algorithms for Multi-Armed Bandits
- Authors: Tianyuan Jin, Keke Huang, Jing Tang, Xiaokui Xiao,
- Abstract summary: We study the streaming BAI problem, where the objective is to identify the arm with the maximum reward mean with at least $1-delta$ probability.
We present a single-arm-memory algorithm that achieves a near instance-dependent optimal sample complexity within $O(log Delta-1)$ passes.
- Score: 28.579280943038555
- License:
- Abstract: This paper studies two variants of the best arm identification (BAI) problem under the streaming model, where we have a stream of $n$ arms with reward distributions supported on $[0,1]$ with unknown means. The arms in the stream are arriving one by one, and the algorithm cannot access an arm unless it is stored in a limited size memory. We first study the streaming \eps-$top$-$k$ arms identification problem, which asks for $k$ arms whose reward means are lower than that of the $k$-th best arm by at most $\eps$ with probability at least $1-\delta$. For general $\eps \in (0,1)$, the existing solution for this problem assumes $k = 1$ and achieves the optimal sample complexity $O(\frac{n}{\eps^2} \log \frac{1}{\delta})$ using $O(\log^*(n))$ ($\log^*(n)$ equals the number of times that we need to apply the logarithm function on $n$ before the results is no more than 1.) memory and a single pass of the stream. We propose an algorithm that works for any $k$ and achieves the optimal sample complexity $O(\frac{n}{\eps^2} \log\frac{k}{\delta})$ using a single-arm memory and a single pass of the stream. Second, we study the streaming BAI problem, where the objective is to identify the arm with the maximum reward mean with at least $1-\delta$ probability, using a single-arm memory and as few passes of the input stream as possible. We present a single-arm-memory algorithm that achieves a near instance-dependent optimal sample complexity within $O(\log \Delta_2^{-1})$ passes, where $\Delta_2$ is the gap between the mean of the best arm and that of the second best arm.
Related papers
- Optimal Top-Two Method for Best Arm Identification and Fluid Analysis [15.353009236788262]
We propose an optimal top-2 type algorithm for the best arm identification problem.
We show that the proposed algorithm is optimal as $delta rightarrow 0$.
arXiv Detail & Related papers (2024-03-14T06:14:07Z) - The Best Arm Evades: Near-optimal Multi-pass Streaming Lower Bounds for Pure Exploration in Multi-armed Bandits [10.329863009504303]
We show that any streaming algorithm with sublinear memory that uses the optimal sample complexity of $O(fracnDelta2)$ requires $Omega(fraclog (1/Delta)log (1/Delta)$ passes.
Our result matches the $O(log(frac1Delta))$-pass algorithm of Jin et al. [ICML'21] that only uses $O(1)$ memory and answers an open question posed by Assadi and Wang.
arXiv Detail & Related papers (2023-09-06T16:41:41Z) - Asymptotically Optimal Pure Exploration for Infinite-Armed Bandits [4.811176167998627]
We study pure exploration with infinitely many bandit arms generated i.i.d. from an unknown distribution.
Our goal is to efficiently select a single high quality arm whose average reward is, with probability $1-delta$, within $varepsilon$ of being among the top $eta$-fraction of arms.
arXiv Detail & Related papers (2023-06-03T04:00:47Z) - TURF: A Two-factor, Universal, Robust, Fast Distribution Learning
Algorithm [64.13217062232874]
One of its most powerful and successful modalities approximates every distribution to an $ell$ distance essentially at most a constant times larger than its closest $t$-piece degree-$d_$.
We provide a method that estimates this number near-optimally, hence helps approach the best possible approximation.
arXiv Detail & Related papers (2022-02-15T03:49:28Z) - Variance-Dependent Best Arm Identification [12.058652922228918]
We study the problem of identifying the best arm in a multi-armed bandit game.
We propose an adaptive algorithm which explores the gaps and variances of the rewards of the arms.
We show that our algorithm is optimal up to doubly logarithmic terms.
arXiv Detail & Related papers (2021-06-19T04:13:54Z) - Differentially Private Multi-Armed Bandits in the Shuffle Model [58.22098764071924]
We give an $(varepsilon,delta)$-differentially private algorithm for the multi-armed bandit (MAB) problem in the shuffle model.
Our upper bound almost matches the regret of the best known algorithms for the centralized model, and significantly outperforms the best known algorithm in the local model.
arXiv Detail & Related papers (2021-06-05T14:11:01Z) - Bandits with many optimal arms [68.17472536610859]
We write $p*$ for the proportion of optimal arms and $Delta$ for the minimal mean-gap between optimal and sub-optimal arms.
We characterize the optimal learning rates both in the cumulative regret setting, and in the best-arm identification setting.
arXiv Detail & Related papers (2021-03-23T11:02:31Z) - Top-$k$ eXtreme Contextual Bandits with Arm Hierarchy [71.17938026619068]
We study the top-$k$ extreme contextual bandits problem, where the total number of arms can be enormous.
We first propose an algorithm for the non-extreme realizable setting, utilizing the Inverse Gap Weighting strategy.
We show that our algorithm has a regret guarantee of $O(ksqrt(A-k+1)T log (|mathcalF|T))$.
arXiv Detail & Related papers (2021-02-15T19:10:52Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
Given an MDP with $S$ states, $A$ actions, the discount factor $gamma in (0,1)$, and an approximation threshold $epsilon > 0$, we provide a model-free algorithm to learn an $epsilon$-optimal policy.
For small enough $epsilon$, we show an improved algorithm with sample complexity.
arXiv Detail & Related papers (2020-06-06T13:34:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.