Population stratification for prediction of mortality in post-AKI patients
- URL: http://arxiv.org/abs/2410.17865v1
- Date: Wed, 23 Oct 2024 13:36:23 GMT
- Title: Population stratification for prediction of mortality in post-AKI patients
- Authors: Flavio S. Correa da Silva, Simon Sawhney,
- Abstract summary: Acute kidney injury (AKI) is a serious clinical condition that affects up to 20% of hospitalised patients.
Patient risk and healthcare expenditures can be minimised by followup planning grounded on predictive models and machine learning.
- Score: 0.0
- License:
- Abstract: Acute kidney injury (AKI) is a serious clinical condition that affects up to 20% of hospitalised patients. AKI is associated with short term unplanned hospital readmission and post-discharge mortality risk. Patient risk and healthcare expenditures can be minimised by followup planning grounded on predictive models and machine learning. Since AKI is multi-factorial, predictive models specialised in different categories of patients can increase accuracy of predictions. In the present article we present some results following this approach.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Random Forest-Based Prediction of Stroke Outcome [7.090384254446659]
We generate a predictive model using machine learning techniques for prediction of mortality and morbidity 3 months after admission.
In conclusion, machine learning RF algorithms can be effectively used in stroke patients for long-term outcome prediction of mortality and morbidity.
arXiv Detail & Related papers (2024-02-01T14:54:17Z) - Prediction of Post-Operative Renal and Pulmonary Complications Using
Transformers [69.81176740997175]
We evaluate the performance of transformer-based models in predicting postoperative acute renal failure, pulmonary complications, and postoperative in-hospital mortality.
Our results demonstrate that transformer-based models can achieve superior performance in predicting postoperative complications and outperform traditional machine learning models.
arXiv Detail & Related papers (2023-06-01T14:08:05Z) - Hospital transfer risk prediction for COVID-19 patients from a
medicalized hotel based on Diffusion GraphSAGE [7.021489981474361]
Medicalized hotels were established in Taiwan as quarantine facilities for COVID-19 patients with no or mild symptoms.
Due to limited medical care available at these hotels, it is of paramount importance to identify patients at risk of clinical deterioration.
This study aimed to develop and evaluate a graph-based deep learning approach for progressive hospital transfer risk prediction in a medicalized hotel setting.
arXiv Detail & Related papers (2022-12-31T14:59:35Z) - Boosting the interpretability of clinical risk scores with intervention
predictions [59.22442473992704]
We propose a joint model of intervention policy and adverse event risk as a means to explicitly communicate the model's assumptions about future interventions.
We show how combining typical risk scores, such as the likelihood of mortality, with future intervention probability scores leads to more interpretable clinical predictions.
arXiv Detail & Related papers (2022-07-06T19:49:42Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
We propose a new method that uses medical text of Electronic Health Records for prediction.
We represent discharge summaries of patients with multiview graphs enhanced by an external knowledge graph.
Experimental results prove the effectiveness of our method, yielding state-of-the-art performance.
arXiv Detail & Related papers (2021-12-19T01:45:57Z) - Process Mining Model to Predict Mortality in Paralytic Ileus Patients [0.0]
Paralytic Ileus (PI) patients are at high risk of death when admitted to the Intensive care unit (ICU), with mortality as high as 40%.
This paper demonstrates performance improvements in predicting the mortality of ICU patients diagnosed with PI after 24 hours of being admitted.
arXiv Detail & Related papers (2021-08-03T03:09:13Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
Existing outcome prediction models suffer from a low recall of infrequent positive outcomes.
We present a highly-scalable and robust machine learning framework to automatically predict adversity represented by mortality and ICU admission.
arXiv Detail & Related papers (2020-11-18T15:56:28Z) - Parkland Trauma Index of Mortality (PTIM): Real-time Predictive Model
for PolyTrauma Patients [0.0]
The Parkland Trauma Index of Mortality (PTIM) is a machine learning algorithm that uses electronic medical record (EMR) data to predict mortality.
The model updates every hour, evolving with the patient's physiologic response to trauma.
It may be a useful tool to inform clinical decision-making for polytrauma patients early in their hospitalization.
arXiv Detail & Related papers (2020-10-07T20:34:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.