Fast classical simulation of qubit-qudit hybrid systems
- URL: http://arxiv.org/abs/2410.17876v1
- Date: Wed, 23 Oct 2024 13:49:25 GMT
- Title: Fast classical simulation of qubit-qudit hybrid systems
- Authors: Haemanth Velmurugan, Arnav Das, Turbasu Chatterjee, Amit Saha, Anupam Chattopadhyay, Amlan Chakrabarti,
- Abstract summary: Simulating quantum circuits is a computationally intensive task that relies heavily on tensor products and matrix multiplications.
Recent advancements, eliminate the need for tensor products and matrix multiplications, offering significant improvements in efficiency and parallelization.
We propose a block-simulation methodology applicable to qubit-qudit hybrid systems.
- Score: 6.116156387681214
- License:
- Abstract: Simulating quantum circuits is a computationally intensive task that relies heavily on tensor products and matrix multiplications, which can be inefficient. Recent advancements, eliminate the need for tensor products and matrix multiplications, offering significant improvements in efficiency and parallelization. Extending these optimizations, we adopt a block-simulation methodology applicable to qubit-qudit hybrid systems. This method interprets the statevector as a collection of blocks and applies gates without computing the entire circuit unitary. Our method, a spiritual successor of the simulator QuDiet \cite{Chatterjee_2023}, utilizes this block-simulation method, thereby gaining major improvements over the simulation methods used by its predecessor. We exhibit that the proposed method is approximately 10$\times$ to 1000$\times$ faster than the state-of-the-art simulator for simulating multi-level quantum systems with various benchmark circuits.
Related papers
- Boundaries for quantum advantage with single photons and loop-based time-bin interferometers [40.908112113947475]
Loop-based boson samplers interfere photons in the time degree of freedom using a sequence of delay lines.
We propose a method to exploit this loop-based structure to more efficiently simulate such systems.
arXiv Detail & Related papers (2024-11-25T19:13:20Z) - Exponential improvements in the simulation of lattice gauge theories using near-optimal techniques [0.0]
We conduct an in-depth analysis of the cost of simulating Abelian and non-Abelian lattice gauge theories.
We provide explicit circuit constructions, as well as T-gate counts and qubit counts for the entire simulation.
arXiv Detail & Related papers (2024-05-16T19:36:49Z) - Improved real-space parallelizable matrix-product state compression and its application to unitary quantum dynamics simulation [0.0]
We introduce an improved real-space parallelizable matrix-product state (MPS) compression method.
We apply this method to simulate unitary quantum dynamics and introduce an improved parallel time-evolving block-decimation algorithm.
The obtained numerical results unequivocally demonstrate that the improved pTEBD algorithm achieves the same level of simulation precision as the current state-of-the-art MPS algorithm.
arXiv Detail & Related papers (2023-12-05T11:14:48Z) - Deep Quantum Circuit Simulations of Low-Energy Nuclear States [51.823503818486394]
We present advances in high-performance numerical simulations of deep quantum circuits.
circuits up to 21 qubits and more than 115,000,000 gates can be efficiently simulated.
arXiv Detail & Related papers (2023-10-26T19:10:58Z) - Tensor Networks or Decision Diagrams? Guidelines for Classical Quantum
Circuit Simulation [65.93830818469833]
tensor networks and decision diagrams have independently been developed with differing perspectives, terminologies, and backgrounds in mind.
We consider how these techniques approach classical quantum circuit simulation, and examine their (dis)similarities with regard to their most applicable abstraction level.
We provide guidelines for when to better use tensor networks and when to better use decision diagrams in classical quantum circuit simulation.
arXiv Detail & Related papers (2023-02-13T19:00:00Z) - Simulation Paths for Quantum Circuit Simulation with Decision Diagrams [72.03286471602073]
We study the importance of the path that is chosen when simulating quantum circuits using decision diagrams.
We propose an open-source framework that allows to investigate dedicated simulation paths.
arXiv Detail & Related papers (2022-03-01T19:00:11Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations.
Physical applications of these hybridized methods yield a gate complexity scaling as $log2 Lambda$ in the electric cutoff.
For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter $lambda$ used to impose an energy cost.
arXiv Detail & Related papers (2021-09-07T20:01:22Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Efficient calculation of gradients in classical simulations of
variational quantum algorithms [0.0]
We present a novel derivation of an emulation strategy to precisely calculate the gradient in O(P) time.
Our strategy is very simple, uses only 'apply gate', 'clone state' and 'inner product' primitives.
It is compatible with gate parallelisation schemes, and hardware accelerated and distributed simulators.
arXiv Detail & Related papers (2020-09-06T21:39:44Z) - Efficient classical simulation of random shallow 2D quantum circuits [104.50546079040298]
Random quantum circuits are commonly viewed as hard to simulate classically.
We show that approximate simulation of typical instances is almost as hard as exact simulation.
We also conjecture that sufficiently shallow random circuits are efficiently simulable more generally.
arXiv Detail & Related papers (2019-12-31T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.