Improved real-space parallelizable matrix-product state compression and its application to unitary quantum dynamics simulation
- URL: http://arxiv.org/abs/2312.02667v2
- Date: Fri, 30 Aug 2024 02:24:00 GMT
- Title: Improved real-space parallelizable matrix-product state compression and its application to unitary quantum dynamics simulation
- Authors: Rong-Yang Sun, Tomonori Shirakawa, Seiji Yunoki,
- Abstract summary: We introduce an improved real-space parallelizable matrix-product state (MPS) compression method.
We apply this method to simulate unitary quantum dynamics and introduce an improved parallel time-evolving block-decimation algorithm.
The obtained numerical results unequivocally demonstrate that the improved pTEBD algorithm achieves the same level of simulation precision as the current state-of-the-art MPS algorithm.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Towards the efficient simulation of near-term quantum devices using tensor network states, we introduce an improved real-space parallelizable matrix-product state (MPS) compression method. This method enables efficient compression of all virtual bonds in constant time, irrespective of the system size, with controlled accuracy, while it maintains the stability of the wavefunction norm without necessitating sequential renormalization procedures. In addition, we introduce a parallel regauging technique to partially restore the deviated canonical form, thereby improving the accuracy of the simulation in subsequent steps. We further apply this method to simulate unitary quantum dynamics and introduce an improved parallel time-evolving block-decimation (pTEBD) algorithm. We employ the improved pTEBD algorithm for extensive simulations of typical one- and two-dimensional quantum circuits, involving over 1000 qubits. The obtained numerical results unequivocally demonstrate that the improved pTEBD algorithm achieves the same level of simulation precision as the current state-of-the-art MPS algorithm but in polynomially shorter time, exhibiting nearly perfect weak scaling performance on a modern supercomputer.
Related papers
- Adaptive variational quantum dynamics simulations with compressed circuits and fewer measurements [4.2643127089535104]
We show an improved version of the adaptive variational quantum dynamics simulation (AVQDS) method, which we call AVQDS(T)
The algorithm adaptively adds layers of disjoint unitary gates to the ansatz circuit so as to keep the McLachlan distance, a measure of the accuracy of the variational dynamics, below a fixed threshold.
We also show a method based on eigenvalue truncation to solve the linear equations of motion for the variational parameters with enhanced noise resilience.
arXiv Detail & Related papers (2024-08-13T02:56:43Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Two dimensional quantum lattice models via mode optimized hybrid CPU-GPU density matrix renormalization group method [0.0]
We present a hybrid numerical approach to simulate quantum many body problems on two spatial dimensional quantum lattice models.
We demonstrate for the two dimensional spinless fermion model and for the Hubbard model on torus geometry that several orders of magnitude in computational time can be saved.
arXiv Detail & Related papers (2023-11-23T17:07:47Z) - Simulating Hamiltonian dynamics in a programmable photonic quantum
processor using linear combinations of unitary operations [4.353492002036882]
We modify the multi-product Trotterization and combine it with the oblivious amplitude amplification to simultaneously reach a high simulation precision and high success probability.
We experimentally implement the modified multi-product algorithm in an integrated-photonics programmable quantum simulator in silicon.
arXiv Detail & Related papers (2022-11-12T18:49:41Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - QuOp_MPI: a framework for parallel simulation of quantum variational
algorithms [0.0]
QuOp_MPI is a Python package designed for parallel simulation of quantum variational algorithms.
It presents an object-orientated approach to quantum variational algorithm design.
arXiv Detail & Related papers (2021-10-08T08:26:09Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations.
Physical applications of these hybridized methods yield a gate complexity scaling as $log2 Lambda$ in the electric cutoff.
For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter $lambda$ used to impose an energy cost.
arXiv Detail & Related papers (2021-09-07T20:01:22Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Realistic simulation of quantum computation using unitary and
measurement channels [1.406995367117218]
We introduce a new simulation approach that relies on approximating the density matrix evolution by a sum of unitary and measurement channels.
This model shows an improvement of at least one order of magnitude in terms of accuracy compared to the best known approaches.
arXiv Detail & Related papers (2020-05-13T14:29:18Z) - Efficient classical simulation of random shallow 2D quantum circuits [104.50546079040298]
Random quantum circuits are commonly viewed as hard to simulate classically.
We show that approximate simulation of typical instances is almost as hard as exact simulation.
We also conjecture that sufficiently shallow random circuits are efficiently simulable more generally.
arXiv Detail & Related papers (2019-12-31T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.