論文の概要: Gaze-Assisted Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2410.17920v1
- Date: Wed, 23 Oct 2024 14:38:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:55:42.776869
- Title: Gaze-Assisted Medical Image Segmentation
- Title(参考訳): Gaze-Assisted Medical Image Segmentation
- Authors: Leila Khaertdinova, Ilya Pershin, Tatiana Shmykova, Bulat Ibragimov,
- Abstract要約: 医用画像(MedSAM)におけるSegment Anything Modelの微調整のプロンプトとして,腹部画像の読影データを用いた。
視線支援MedSAMの結果は,最先端のセグメンテーションモデルよりも優れていた。
- 参考スコア(独自算出の注目度): 2.5306205722386728
- License:
- Abstract: The annotation of patient organs is a crucial part of various diagnostic and treatment procedures, such as radiotherapy planning. Manual annotation is extremely time-consuming, while its automation using modern image analysis techniques has not yet reached levels sufficient for clinical adoption. This paper investigates the idea of semi-supervised medical image segmentation using human gaze as interactive input for segmentation correction. In particular, we fine-tuned the Segment Anything Model in Medical Images (MedSAM), a public solution that uses various prompt types as additional input for semi-automated segmentation correction. We used human gaze data from reading abdominal images as a prompt for fine-tuning MedSAM. The model was validated on a public WORD database, which consists of 120 CT scans of 16 abdominal organs. The results of the gaze-assisted MedSAM were shown to be superior to the results of the state-of-the-art segmentation models. In particular, the average Dice coefficient for 16 abdominal organs was 85.8%, 86.7%, 81.7%, and 90.5% for nnUNetV2, ResUNet, original MedSAM, and our gaze-assisted MedSAM model, respectively.
- Abstract(参考訳): 患者臓器のアノテーションは、放射線治療計画のような様々な診断および治療手順の重要な部分である。
手動アノテーションは非常に時間がかかるが、現代の画像解析技術を用いた自動化は、まだ臨床応用に十分なレベルに達していない。
本稿では,人間の視線をセグメント補正のための対話的入力として利用する半教師付き医用画像セグメンテーションの考え方について検討する。
特に医療画像におけるセグメンテーションモデル (MedSAM) を微調整し, 様々なプロンプト型を半自動セグメンテーション補正のための追加入力として用いる。
We used human gaze data from reading abdominal image as a prompt for fine-tuning MedSAM。
このモデルは、腹部16臓器の120個のCTスキャンからなる、公共のWORDデータベース上で検証された。
視線支援MedSAMの結果は,最先端のセグメンテーションモデルよりも優れていた。
特に腹部16臓器の平均Dice係数は85.8%,86.7%,81.7%,90.5%であった。
関連論文リスト
- Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
医療画像の文脈では、SAMがそのセグメンテーション予測を生成した後、人間の専門家が特定のテストサンプルのセグメンテーションを修正することは珍しくない。
我々は、オンライン機械学習の利点を活用して、テスト期間中にSegment Anything(SA)を強化する新しいアプローチを導入する。
医用画像におけるSAのセグメンテーション品質を改善することを目的として,オンライン学習のための修正アノテーションを用いた。
論文 参考訳(メタデータ) (2024-06-03T03:16:25Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
本研究では,TotalSegmentatorをMR画像に拡張した。
このデータセットに基づいてnnU-Netセグメンテーションアルゴリズムを訓練し、類似度係数(Dice)を計算し、モデルの性能を評価した。
このモデルは、他の2つの公開セグメンテーションモデル(Dice score 0.824 vs 0.762; p0.001 and 0.762 versus 0.542; p)を大きく上回った。
論文 参考訳(メタデータ) (2024-05-29T20:15:54Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - Utilizing Segment Anything Model For Assessing Localization of GRAD-CAM
in Medical Imaging [0.0]
衛生マップアルゴリズムは、医療画像を含む複数の分野に適用されている。
現在の研究は、画像内の医学的異常に基づいて、唾液マップの局所化を評価することで能力を調べる。
本稿では,既存のメトリクスの精度を高めるために,SAM(Seegment Anything Model)の利用を提案する。
論文 参考訳(メタデータ) (2023-06-24T19:54:50Z) - Zero-shot performance of the Segment Anything Model (SAM) in 2D medical
imaging: A comprehensive evaluation and practical guidelines [0.13854111346209866]
Segment Anything Model (SAM)は、大規模なトレーニングデータセットを使用して、ほぼすべてのオブジェクトをセグメント化する。
この結果から,SAMのゼロショット性能は,現在の最先端技術に匹敵するものであることが判明した。
我々は、一貫して堅牢な結果をもたらしながら、最小限の相互作用を必要とする実践的ガイドラインを提案する。
論文 参考訳(メタデータ) (2023-04-28T22:07:24Z) - Generalist Vision Foundation Models for Medical Imaging: A Case Study of
Segment Anything Model on Zero-Shot Medical Segmentation [5.547422331445511]
9つの医用画像セグメンテーションベンチマークにおいて,定量および定性的ゼロショットセグメンテーションの結果を報告する。
本研究は,医用画像における一般視基盤モデルの汎用性を示すものである。
論文 参考訳(メタデータ) (2023-04-25T08:07:59Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
Segment Anything Model (SAM)は画像セグメンテーションの分野で最近人気を集めている。
近年の研究では、SAMは医用画像のセグメンテーションにおいて過小評価されている。
ドメイン固有の医療知識をセグメンテーションモデルに組み込んだ医療SAMアダプタ(Med-SA)を提案する。
論文 参考訳(メタデータ) (2023-04-25T07:34:22Z) - Segment Anything in Medical Images [21.43661408153244]
医用画像の普遍的分割を可能にする基盤モデルであるMedSAMについて述べる。
このモデルは、1,570,263枚の画像マスク対を持つ大規模医療画像データセット上で開発され、10種類の画像モダリティと30以上のがんタイプをカバーする。
論文 参考訳(メタデータ) (2023-04-24T17:56:12Z) - SAM.MD: Zero-shot medical image segmentation capabilities of the Segment
Anything Model [1.1221592576472588]
医用画像のセグメンテーションにおけるセグメンテーションモデル(Segment Anything Model)のゼロショット機能の評価を行った。
SAMはCTデータによく対応し,半自動セグメンテーションツールの進歩の触媒となる可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-10T18:20:29Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
身体CT画像の深層学習セグメント化モデルを提案する。
このモデルは、臓器の容積、疾患の特徴、外科的または放射線療法計画などのユースケースに関連する104の解剖学的構造を区分することができる。
論文 参考訳(メタデータ) (2022-08-11T15:16:40Z) - Y-Net for Chest X-Ray Preprocessing: Simultaneous Classification of
Geometry and Segmentation of Annotations [70.0118756144807]
この研究は、機械学習アルゴリズムに胸部X線入力のための一般的な前処理ステップを導入する。
VGG11エンコーダをベースとした改良Y-Netアーキテクチャを用いて,ラジオグラフィの幾何学的配向とセグメンテーションを同時に学習する。
対照画像の27.0%,34.9%に対し,95.8%,96.2%のアノテーションマスクが認められた。
論文 参考訳(メタデータ) (2020-05-08T02:16:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。