Dynamic Guided and Domain Applicable Safeguards for Enhanced Security in Large Language Models
- URL: http://arxiv.org/abs/2410.17922v2
- Date: Sun, 09 Feb 2025 03:34:47 GMT
- Title: Dynamic Guided and Domain Applicable Safeguards for Enhanced Security in Large Language Models
- Authors: Weidi Luo, He Cao, Zijing Liu, Yu Wang, Aidan Wong, Bing Feng, Yuan Yao, Yu Li,
- Abstract summary: We introduce a multi-agents-based defense framework, Guide for Defense (G4D), which provides analytically grounded safety response guidance.
Extensive experiments on popular jailbreak attacks and benign datasets show that our G4D can enhance LLM's robustness against jailbreak attacks on general and domain-specific scenarios.
- Score: 15.251988342073874
- License:
- Abstract: With the extensive deployment of Large Language Models (LLMs), ensuring their safety has become increasingly critical. However, existing defense methods often struggle with two key issues: (i) inadequate defense capabilities, particularly in domain-specific scenarios like chemistry, where a lack of specialized knowledge can lead to the generation of harmful responses to malicious queries. (ii) over-defensiveness, which compromises the general utility and responsiveness of LLMs. To mitigate these issues, we introduce a multi-agents-based defense framework, Guide for Defense (G4D), which leverages accurate external information to provide an unbiased summary of user intentions and analytically grounded safety response guidance. Extensive experiments on popular jailbreak attacks and benign datasets show that our G4D can enhance LLM's robustness against jailbreak attacks on general and domain-specific scenarios without compromising the model's general functionality.
Related papers
- Safety at Scale: A Comprehensive Survey of Large Model Safety [299.801463557549]
We present a comprehensive taxonomy of safety threats to large models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats.
We identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices.
arXiv Detail & Related papers (2025-02-02T05:14:22Z) - Enhancing Model Defense Against Jailbreaks with Proactive Safety Reasoning [21.423429565221383]
Large language models (LLMs) are vital for a wide range of applications yet remain susceptible to jailbreak threats.
We propose a novel defense strategy, Safety Chain-of-Thought (SCoT), which harnesses the enhanced textitreasoning capabilities of LLMs for proactive assessment of harmful inputs.
arXiv Detail & Related papers (2025-01-31T14:45:23Z) - Latent-space adversarial training with post-aware calibration for defending large language models against jailbreak attacks [25.212057612342218]
Large language models (LLMs) are susceptible to jailbreak attacks, which exploit system vulnerabilities to bypass safety measures and generate harmful outputs.
We propose a Latent-space Adversarial Training with Post-aware framework to address this problem.
arXiv Detail & Related papers (2025-01-18T02:57:12Z) - Emerging Security Challenges of Large Language Models [6.151633954305939]
Large language models (LLMs) have achieved record adoption in a short period of time across many different sectors.
They are open-ended models trained on diverse data without being tailored for specific downstream tasks.
Traditional Machine Learning (ML) models are vulnerable to adversarial attacks.
arXiv Detail & Related papers (2024-12-23T14:36:37Z) - Defining and Evaluating Physical Safety for Large Language Models [62.4971588282174]
Large Language Models (LLMs) are increasingly used to control robotic systems such as drones.
Their risks of causing physical threats and harm in real-world applications remain unexplored.
We classify the physical safety risks of drones into four categories: (1) human-targeted threats, (2) object-targeted threats, (3) infrastructure attacks, and (4) regulatory violations.
arXiv Detail & Related papers (2024-11-04T17:41:25Z) - Adversarial Tuning: Defending Against Jailbreak Attacks for LLMs [13.317364896194903]
We propose a two-stage adversarial tuning framework to enhance Large Language Models' generalized defense capabilities.
In the first stage, we introduce the hierarchical meta-universal adversarial prompt learning to efficiently generate token-level adversarial prompts.
In the second stage, we propose the automatic adversarial prompt learning to iteratively refine semantic-level adversarial prompts.
arXiv Detail & Related papers (2024-06-07T15:37:15Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
This paper introduces Defensive Prompt Patch (DPP), a novel prompt-based defense mechanism for large language models (LLMs)
Unlike previous approaches, DPP is designed to achieve a minimal Attack Success Rate (ASR) while preserving the high utility of LLMs.
Empirical results conducted on LLAMA-2-7B-Chat and Mistral-7B-Instruct-v0.2 models demonstrate the robustness and adaptability of DPP.
arXiv Detail & Related papers (2024-05-30T14:40:35Z) - Fine-Tuning, Quantization, and LLMs: Navigating Unintended Outcomes [0.0]
Large Language Models (LLMs) have gained widespread adoption across various domains, including chatbots and auto-task completion agents.
These models are susceptible to safety vulnerabilities such as jailbreaking, prompt injection, and privacy leakage attacks.
This study investigates the impact of these modifications on LLM safety, a critical consideration for building reliable and secure AI systems.
arXiv Detail & Related papers (2024-04-05T20:31:45Z) - SALAD-Bench: A Hierarchical and Comprehensive Safety Benchmark for Large Language Models [107.82336341926134]
SALAD-Bench is a safety benchmark specifically designed for evaluating Large Language Models (LLMs)
It transcends conventional benchmarks through its large scale, rich diversity, intricate taxonomy spanning three levels, and versatile functionalities.
arXiv Detail & Related papers (2024-02-07T17:33:54Z) - Baseline Defenses for Adversarial Attacks Against Aligned Language
Models [109.75753454188705]
Recent work shows that text moderations can produce jailbreaking prompts that bypass defenses.
We look at three types of defenses: detection (perplexity based), input preprocessing (paraphrase and retokenization), and adversarial training.
We find that the weakness of existing discretes for text, combined with the relatively high costs of optimization, makes standard adaptive attacks more challenging for LLMs.
arXiv Detail & Related papers (2023-09-01T17:59:44Z) - On Evaluating Adversarial Robustness of Large Vision-Language Models [64.66104342002882]
We evaluate the robustness of large vision-language models (VLMs) in the most realistic and high-risk setting.
In particular, we first craft targeted adversarial examples against pretrained models such as CLIP and BLIP.
Black-box queries on these VLMs can further improve the effectiveness of targeted evasion.
arXiv Detail & Related papers (2023-05-26T13:49:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.