Deep Learning for Low-Latency, Quantum-Ready RF Sensing
- URL: http://arxiv.org/abs/2404.17962v1
- Date: Sat, 27 Apr 2024 17:22:12 GMT
- Title: Deep Learning for Low-Latency, Quantum-Ready RF Sensing
- Authors: Pranav Gokhale, Caitlin Carnahan, William Clark, Frederic T. Chong,
- Abstract summary: Recent work has shown the promise of applying deep learning to enhance software processing of radio frequency (RF) signals.
In this paper, we describe our implementations of quantum-ready machine learning approaches for RF signal classification.
- Score: 2.5393702482222813
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work has shown the promise of applying deep learning to enhance software processing of radio frequency (RF) signals. In parallel, hardware developments with quantum RF sensors based on Rydberg atoms are breaking longstanding barriers in frequency range, resolution, and sensitivity. In this paper, we describe our implementations of quantum-ready machine learning approaches for RF signal classification. Our primary objective is latency: while deep learning offers a more powerful computational paradigm, it also traditionally incurs latency overheads that hinder wider scale deployment. Our work spans three axes. (1) A novel continuous wavelet transform (CWT) based recurrent neural network (RNN) architecture that enables flexible online classification of RF signals on-the-fly with reduced sampling time. (2) Low-latency inference techniques for both GPU and CPU that span over 100x reductions in inference time, enabling real-time operation with sub-millisecond inference. (3) Quantum-readiness validated through application of our models to physics-based simulation of Rydberg atom QRF sensors. Altogether, our work bridges towards next-generation RF sensors that use quantum technology to surpass previous physical limits, paired with latency-optimized AI/ML software that is suitable for real-time deployment.
Related papers
- Dynamic Spectrum Access for Ambient Backscatter Communication-assisted D2D Systems with Quantum Reinforcement Learning [68.63990729719369]
The wireless spectrum is becoming scarce, resulting in low spectral efficiency for D2D communications.
This paper aims to integrate the ambient backscatter communication technology into D2D devices to allow them to backscatter ambient RF signals.
We develop a novel quantum reinforcement learning (RL) algorithm that can achieve a faster convergence rate with fewer training parameters.
arXiv Detail & Related papers (2024-10-23T15:36:43Z) - Rydberg Atomic Quantum Receivers for Classical Wireless Communication and Sensing [71.94873601156017]
Rydberg atomic quantum receiver (RAQR) is designed for receiving radio frequency (RF) signals.
RAQRs exhibit compelling scalability and lend themselves to the construction of innovative, compact receivers.
arXiv Detail & Related papers (2024-09-22T15:55:02Z) - OFDM-Standard Compatible SC-NOFS Waveforms for Low-Latency and Jitter-Tolerance Industrial IoT Communications [53.398544571833135]
This work proposes a spectrally efficient irregular Sinc (irSinc) shaping technique, revisiting the traditional Sinc back to 1924.
irSinc yields a signal with increased spectral efficiency without sacrificing error performance.
Our signal achieves faster data transmission within the same spectral bandwidth through 5G standard signal configuration.
arXiv Detail & Related papers (2024-06-07T09:20:30Z) - Deep-Learned Compression for Radio-Frequency Signal Classification [0.49109372384514843]
Next-generation cellular concepts rely on the processing of large quantities of radio-frequency (RF) samples.
We propose a deep learned compression model, HQARF, to compress the complex-valued samples of RF signals.
We are assessing the effects of HQARF on the performance of an AI model trained to infer the modulation class of the RF signal.
arXiv Detail & Related papers (2024-03-05T17:42:39Z) - RF-Photonic Deep Learning Processor with Shannon-Limited Data Movement [0.0]
Optical neural networks (ONNs) are promising accelerators with ultra-low latency and energy consumption.
We introduce our multiplicative analog frequency transform ONN (MAFT-ONN) that encodes the data in the frequency domain.
We experimentally demonstrate the first hardware accelerator that computes fully-analog deep learning on raw RF signals.
arXiv Detail & Related papers (2022-07-08T16:37:13Z) - Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware [50.380319968947035]
Recent deep learning approaches have reached accuracy in such tasks, but their implementation on conventional embedded solutions is still computationally very and energy expensive.
We propose a new benchmark for computing tactile pattern recognition at the edge through letters reading.
We trained and compared feed-forward and recurrent spiking neural networks (SNNs) offline using back-propagation through time with surrogate gradients, then we deployed them on the Intel Loihimorphic chip for efficient inference.
Our results show that the LSTM outperforms the recurrent SNN in terms of accuracy by 14%. However, the recurrent SNN on Loihi is 237 times more energy
arXiv Detail & Related papers (2022-05-30T14:30:45Z) - Learning Wave Propagation with Attention-Based Convolutional Recurrent
Autoencoder Net [0.0]
We present an end-to-end attention-based convolutional recurrent autoencoder (AB-CRAN) network for data-driven modeling of wave propagation phenomena.
We employ a denoising-based convolutional autoencoder from the full-order snapshots given by time-dependent hyperbolic partial differential equations for wave propagation.
The attention-based sequence-to-sequence network increases the time-horizon of prediction by five times compared to the plain RNN-LSTM.
arXiv Detail & Related papers (2022-01-17T20:51:59Z) - Real-Time GPU-Accelerated Machine Learning Based Multiuser Detection for
5G and Beyond [70.81551587109833]
nonlinear beamforming filters can significantly outperform linear approaches in stationary scenarios with massive connectivity.
One of the main challenges comes from the real-time implementation of these algorithms.
This paper explores the acceleration of APSM-based algorithms through massive parallelization.
arXiv Detail & Related papers (2022-01-13T15:20:45Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - PINNup: Robust neural network wavefield solutions using frequency
upscaling and neuron splitting [0.0]
We propose a novel implementation of PINN using frequency upscaling and neuron splitting.
The proposed PINN exhibits notable superiority in terms of convergence and accuracy.
It can achieve neuron based high-frequency wavefield solutions with a two-hidden-layer model.
arXiv Detail & Related papers (2021-09-29T16:35:50Z) - A Photonic-Circuits-Inspired Compact Network: Toward Real-Time Wireless
Signal Classification at the Edge [3.841495731646297]
Large size of machine learning models can make them difficult to implement on edge devices for latency-sensitive downstream tasks.
In wireless communication systems, ML data processing at a sub-millisecond scale will enable real-time network monitoring.
We propose a novel compact deep network that consists of a photonic-hardware-inspired recurrent neural network model.
arXiv Detail & Related papers (2021-06-25T19:55:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.