論文の概要: GraphTeam: Facilitating Large Language Model-based Graph Analysis via Multi-Agent Collaboration
- arxiv url: http://arxiv.org/abs/2410.18032v2
- Date: Thu, 07 Nov 2024 05:10:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:36:37.151398
- Title: GraphTeam: Facilitating Large Language Model-based Graph Analysis via Multi-Agent Collaboration
- Title(参考訳): GraphTeam: マルチエージェントコラボレーションによる大規模言語モデルベースグラフ解析の実現
- Authors: Xin Li, Qizhi Chu, Yubin Chen, Yang Liu, Yaoqi Liu, Zekai Yu, Weize Chen, Chen Qian, Chuan Shi, Cheng Yang,
- Abstract要約: GraphTeamは3つのモジュールから5つのLLMベースのエージェントで構成されており、異なる特殊性を持つエージェントは複雑な問題に対処するために協力することができる。
6つのグラフ分析ベンチマークの実験は、GraphTeamが最先端のパフォーマンスを達成し、精度の点で最高のベースラインよりも平均25.85%改善していることを示している。
- 参考スコア(独自算出の注目度): 46.663380413396226
- License:
- Abstract: Graphs are widely used for modeling relational data in real-world scenarios, such as social networks and urban computing. Existing LLM-based graph analysis approaches either integrate graph neural networks (GNNs) for specific machine learning tasks, limiting their transferability, or rely solely on LLMs' internal reasoning ability, resulting in suboptimal performance. To address these limitations, we take advantage of recent advances in LLM-based agents, which have shown capabilities of utilizing external knowledge or tools for problem solving. By simulating human problem-solving strategies such as analogy and collaboration, we propose a multi-agent system based on LLMs named GraphTeam, for graph analysis. GraphTeam consists of five LLM-based agents from three modules, and the agents with different specialities can collaborate with each other to address complex problems. Specifically, (1) input-output normalization module: the question agent extracts and refines four key arguments from the original question, facilitating the problem understanding, and the answer agent organizes the results to meet the output requirement; (2) external knowledge retrieval module: we first build a knowledge base consisting of relevant documentation and experience information, and then the search agent retrieves the most relevant entries for each question. (3) problem-solving module: given the retrieved information from search agent, the coding agent uses established algorithms via programming to generate solutions, and in case the coding agent does not work, the reasoning agent will directly compute the results without programming. Extensive experiments on six graph analysis benchmarks demonstrate that GraphTeam achieves state-of-the-art performance with an average 25.85% improvement over the best baseline in terms of accuracy. The code and data are available at https://github.com/BUPT-GAMMA/GraphTeam.
- Abstract(参考訳): グラフは、ソーシャルネットワークや都市コンピューティングのような現実世界のシナリオにおける関係データのモデリングに広く利用されている。
既存のLLMベースのグラフ分析アプローチは、特定の機械学習タスクにグラフニューラルネットワーク(GNN)を統合するか、転送可能性を制限するか、あるいはLSMの内部推論能力にのみ依存する。
これらの制約に対処するため,LLMをベースとしたエージェントの最近の進歩を活用し,外部知識や問題解決ツールを活用する能力を示した。
類似性や協調性といった人間の問題解決戦略をシミュレートすることで,グラフ解析のためのLLMに基づくマルチエージェントシステムを提案する。
GraphTeamは3つのモジュールから5つのLLMベースのエージェントで構成されており、異なる特殊性を持つエージェントは複雑な問題に対処するために互いに協力することができる。
具体的には,(1)インプット・アウトプットの正規化モジュール:質問エージェントが元の質問から4つのキー引数を抽出・精査し,問題の理解を容易にし,回答エージェントが出力要求を満たすように結果を整理する;(2)外部知識検索モジュール:まず,関連するドキュメンテーションと経験情報からなる知識ベースを構築し,検索エージェントが各質問に対して最も関連性の高い項目を検索する。
(3)問題解決モジュール: 検索エージェントから取得した情報が与えられた場合、符号化エージェントは、プログラムを介して確立されたアルゴリズムを使用してソリューションを生成し、コーディングエージェントが動作しない場合、推論エージェントは、プログラムなしで結果を直接計算する。
6つのグラフ分析ベンチマークの大規模な実験は、GraphTeamが最先端のパフォーマンスを達成し、最高のベースラインよりも平均25.85%改善していることを示している。
コードとデータはhttps://github.com/BUPT-GAMMA/GraphTeamで公開されている。
関連論文リスト
- Scalable and Accurate Graph Reasoning with LLM-based Multi-Agents [27.4884498301785]
GraphAgent-Reasonerは、明示的で正確なグラフ推論のための微調整不要なフレームワークである。
分散グラフ計算理論にインスパイアされた我々のフレームワークは、グラフ問題を複数のエージェント間で分散される小さなノード中心のタスクに分解する。
本フレームワークは,Webページ重要度分析などの実世界のグラフ推論アプリケーションを扱う能力を示す。
論文 参考訳(メタデータ) (2024-10-07T15:34:14Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
この研究は、グラフパターンタスクにおける大規模言語モデルの能力を評価するためのベンチマークを導入する。
我々は,LLMが用語的記述と位相的記述の両方に基づいて,グラフパターンを理解できるかどうかを評価するベンチマークを開発した。
私たちのベンチマークでは、合成データセットと実際のデータセットの両方と、11のタスクと7のモデルで構成されています。
論文 参考訳(メタデータ) (2024-10-04T04:48:33Z) - Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models [90.98855064914379]
グラフを処理するために,大規模言語モデル(LLM)のベンチマークであるProGraphを導入する。
その結果,現在のLCMの性能は不満足であり,最高のモデルでは36%の精度しか達成できないことがわかった。
本研究では,6つの広く使用されているグラフライブラリに基づいて,クローリングされたドキュメントと自動生成コードを含むLLM4Graphデータセットを提案する。
論文 参考訳(メタデータ) (2024-09-29T11:38:45Z) - LAMBDA: A Large Model Based Data Agent [7.240586338370509]
本稿では,LArge Model Based Data Agent (LAMBDA)を紹介する。
LAMBDAは、複雑なデータ駆動アプリケーションにおけるデータ分析の課題に対処するように設計されている。
それは、人間と人工知能をシームレスに統合することで、データ分析パラダイムを強化する可能性がある。
論文 参考訳(メタデータ) (2024-07-24T06:26:36Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
大規模言語モデル(LLM)エージェントは、精度と幻覚を高めるために外部ツールと知識を活用する際、印象的な能力を示した。
本稿では、LLMエージェントを最適化して提供されたツールを効果的に活用し、与えられたタスクのパフォーマンスを向上させる新しい自動化フレームワークであるAvaTaRを紹介する。
論文 参考訳(メタデータ) (2024-06-17T04:20:02Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
言語エージェントにおけるタスクプランニングは、大規模言語モデル(LLM)の開発とともに重要な研究トピックとして浮上している。
本稿では,課題計画のためのグラフ学習に基づく手法について検討する。
我々のグラフ学習への関心は、注意のバイアスと自己回帰的損失が、グラフ上の意思決定を効果的にナビゲートするLLMの能力を妨げているという理論的な発見に起因している。
論文 参考訳(メタデータ) (2024-05-29T14:26:24Z) - Language Agents as Optimizable Graphs [31.220547147952278]
本稿では,Large Language Models (LLM) ベースのエージェントを計算グラフとして記述する。
我々のフレームワークは、様々なLSMエージェントを効率的に開発し、統合し、自動的に改善するために使用することができる。
論文 参考訳(メタデータ) (2024-02-26T18:48:27Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
大規模言語モデル (LLMs) が最前線として登場し、様々なアプリケーションにおいて非並列の長所を示している。
LLMとグラフ構造化データを組み合わせることは、非常に興味深いトピックです。
本稿では、そのような統合を2つの主要なカテゴリに分岐する。
論文 参考訳(メタデータ) (2023-10-09T07:59:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。