A Deep Learning Approach to Estimate Canopy Height and Uncertainty by Integrating Seasonal Optical, SAR and Limited GEDI LiDAR Data over Northern Forests
- URL: http://arxiv.org/abs/2410.18108v1
- Date: Tue, 08 Oct 2024 20:27:11 GMT
- Title: A Deep Learning Approach to Estimate Canopy Height and Uncertainty by Integrating Seasonal Optical, SAR and Limited GEDI LiDAR Data over Northern Forests
- Authors: Jose B. Castro, Cheryl Rogers, Camile Sothe, Dominic Cyr, Alemu Gonsamo,
- Abstract summary: This study introduces a methodology for generating spatially continuous, high-resolution canopy height and uncertainty estimates.
We integrate multi-source, multi-seasonal satellite data from Sentinel-1, Landsat, and ALOS-PALSAR-2 with spaceborne GEDI LiDAR as reference data.
Using seasonal data instead of summer-only data improved variability by 10%, reduced error by 0.45 m, and decreased bias by 1 m.
- Score: 0.0
- License:
- Abstract: Accurate forest canopy height estimation is essential for evaluating aboveground biomass and carbon stock dynamics, supporting ecosystem monitoring services like timber provisioning, climate change mitigation, and biodiversity conservation. However, despite advancements in spaceborne LiDAR technology, data for northern high latitudes remain limited due to orbital and sampling constraints. This study introduces a methodology for generating spatially continuous, high-resolution canopy height and uncertainty estimates using Deep Learning Regression models. We integrate multi-source, multi-seasonal satellite data from Sentinel-1, Landsat, and ALOS-PALSAR-2, with spaceborne GEDI LiDAR as reference data. Our approach was tested in Ontario, Canada, and validated with airborne LiDAR, demonstrating strong performance. The best results were achieved by incorporating seasonal Sentinel-1 and Landsat features alongside PALSAR data, yielding an R-square of 0.72, RMSE of 3.43 m, and bias of 2.44 m. Using seasonal data instead of summer-only data improved variability by 10%, reduced error by 0.45 m, and decreased bias by 1 m. The deep learning model's weighting strategy notably reduced errors in tall canopy height estimates compared to a recent global model, though it overestimated lower canopy heights. Uncertainty maps highlighted greater uncertainty near forest edges, where GEDI measurements are prone to errors and SAR data may encounter backscatter issues like foreshortening, layover, and shadow. This study enhances canopy height estimation techniques in areas lacking spaceborne LiDAR coverage, providing essential tools for forestry, environmental monitoring, and carbon stock estimation.
Related papers
- 3D-SAR Tomography and Machine Learning for High-Resolution Tree Height Estimation [4.1942958779358674]
Tree height, a key factor in biomass calculations, can be measured using Synthetic Aperture Radar (SAR) technology.
This study applies machine learning to extract forest height data from two SAR products.
We use the TomoSense dataset, containing SAR and LiDAR data from Germany's Eifel National Park, to develop and evaluate height estimation models.
arXiv Detail & Related papers (2024-09-09T14:07:38Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
arXiv Detail & Related papers (2024-08-27T15:03:20Z) - Unified Deep Learning Model for Global Prediction of Aboveground Biomass, Canopy Height and Cover from High-Resolution, Multi-Sensor Satellite Imagery [0.196629787330046]
We present a new methodology which uses multi-sensor, multi-spectral imagery of 10 meters and a deep learning based model which unifies the prediction of above ground biomass density (AGBD), canopy height (CH), canopy cover (CC)
The model is trained on millions of globally sampled GEDI-L2/L4 measurements. We validate the capability of our model by deploying it over the entire globe for the year 2023 as well as annually from 2016 to 2023 over selected areas.
arXiv Detail & Related papers (2024-08-20T23:15:41Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Estimating Canopy Height at Scale [15.744009072839425]
We propose a framework for global-scale canopy height estimation based on satellite data.
A comparison between predictions and ground-truth labels yields an MAE / RMSE of 2.43 / 4.73 (meters) overall and 4.45 / 6.72 (meters) for trees taller than five meters.
arXiv Detail & Related papers (2024-06-03T07:53:38Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Vision Transformers, a new approach for high-resolution and large-scale
mapping of canopy heights [50.52704854147297]
We present a new vision transformer (ViT) model optimized with a classification (discrete) and a continuous loss function.
This model achieves better accuracy than previously used convolutional based approaches (ConvNets) optimized with only a continuous loss function.
arXiv Detail & Related papers (2023-04-22T22:39:03Z) - A high-resolution canopy height model of the Earth [22.603549892832753]
We present the first global, wall-to-wall canopy height map at 10 m ground sampling distance for the year 2020.
We have developed a probabilistic deep learning model to retrieve canopy height from Sentinel-2 images anywhere on Earth.
Our model enables consistent, uncertainty-informed worldwide mapping and supports an ongoing monitoring to detect change and inform decision making.
arXiv Detail & Related papers (2022-04-13T10:34:32Z) - Jalisco's multiclass land cover analysis and classification using a
novel lightweight convnet with real-world multispectral and relief data [51.715517570634994]
We present our novel lightweight (only 89k parameters) Convolution Neural Network (ConvNet) to make LC classification and analysis.
In this work, we combine three real-world open data sources to obtain 13 channels.
Our embedded analysis anticipates the limited performance in some classes and gives us the opportunity to group the most similar.
arXiv Detail & Related papers (2022-01-26T14:58:51Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
We propose a Bayesian deep learning approach to densely estimate forest structure variables at country-scale with 10-meter resolution.
Our method jointly transforms Sentinel-2 optical images and Sentinel-1 synthetic aperture radar images into maps of five different forest structure variables.
We train and test our model on reference data from 41 airborne laser scanning missions across Norway.
arXiv Detail & Related papers (2021-11-25T16:21:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.