Yesterday's News: Benchmarking Multi-Dimensional Out-of-Distribution Generalization of Misinformation Detection Models
- URL: http://arxiv.org/abs/2410.18122v2
- Date: Mon, 26 May 2025 19:18:59 GMT
- Title: Yesterday's News: Benchmarking Multi-Dimensional Out-of-Distribution Generalization of Misinformation Detection Models
- Authors: Ivo Verhoeven, Pushkar Mishra, Ekaterina Shutova,
- Abstract summary: This article introduces misinfo-general, a benchmark dataset for evaluating misinformation models' ability to perform out-of-distribution generalization.<n>We identify time, event, topic, publisher, political bias, misinformation type as important axes for generalization.<n>We show how this model fails desiderata, which is not necessarily obvious from classification metrics.
- Score: 15.120606566150816
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article introduces misinfo-general, a benchmark dataset for evaluating misinformation models' ability to perform out-of-distribution generalization. Misinformation changes rapidly, much more quickly than moderators can annotate at scale, resulting in a shift between the training and inference data distributions. As a result, misinformation detectors need to be able to perform out-of-distribution generalization, an attribute they currently lack. Our benchmark uses distant labelling to enable simulating covariate shifts in misinformation content. We identify time, event, topic, publisher, political bias, misinformation type as important axes for generalization, and we evaluate a common class of baseline models on each. Using article metadata, we show how this model fails desiderata, which is not necessarily obvious from classification metrics. Finally, we analyze properties of the data to ensure limited presence of modelling shortcuts. We make the dataset and accompanying code publicly available: https://github.com/ioverho/misinfo-general
Related papers
- Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.
FAST surpasses state-of-the-art baselines with superior debiasing performance.
This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - Prospector Heads: Generalized Feature Attribution for Large Models & Data [82.02696069543454]
We introduce prospector heads, an efficient and interpretable alternative to explanation-based attribution methods.
We demonstrate how prospector heads enable improved interpretation and discovery of class-specific patterns in input data.
arXiv Detail & Related papers (2024-02-18T23:01:28Z) - Supervised Algorithmic Fairness in Distribution Shifts: A Survey [17.826312801085052]
In real-world applications, machine learning models are often trained on a specific dataset but deployed in environments where the data distribution may shift.
This shift can lead to unfair predictions, disproportionately affecting certain groups characterized by sensitive attributes, such as race and gender.
arXiv Detail & Related papers (2024-02-02T11:26:18Z) - Probabilistic Test-Time Generalization by Variational Neighbor-Labeling [62.158807685159736]
This paper strives for domain generalization, where models are trained exclusively on source domains before being deployed on unseen target domains.
Probability pseudo-labeling of target samples to generalize the source-trained model to the target domain at test time.
Variational neighbor labels that incorporate the information of neighboring target samples to generate more robust pseudo labels.
arXiv Detail & Related papers (2023-07-08T18:58:08Z) - Beyond Normal: On the Evaluation of Mutual Information Estimators [52.85079110699378]
We show how to construct a diverse family of distributions with known ground-truth mutual information.
We provide guidelines for practitioners on how to select appropriate estimator adapted to the difficulty of problem considered.
arXiv Detail & Related papers (2023-06-19T17:26:34Z) - An Offline Metric for the Debiasedness of Click Models [52.25681483524383]
Click models are a common method for extracting information from user clicks.<n>Recent work shows that the current evaluation practices in the community fail to guarantee that a well-performing click model generalizes well to downstream tasks.<n>We introduce the concept of debiasedness in click modeling and derive a metric for measuring it.
arXiv Detail & Related papers (2023-04-19T10:59:34Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
We propose a general approach for debiasing vision-language foundation models by projecting out biased directions in the text embedding.
We show that debiasing only the text embedding with a calibrated projection matrix suffices to yield robust classifiers and fair generative models.
arXiv Detail & Related papers (2023-01-31T20:09:33Z) - Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time [69.77704012415845]
Temporal shifts can considerably degrade performance of machine learning models deployed in the real world.
We benchmark 13 prior approaches, including methods in domain generalization, continual learning, self-supervised learning, and ensemble learning.
Under both evaluation strategies, we observe an average performance drop of 20% from in-distribution to out-of-distribution data.
arXiv Detail & Related papers (2022-11-25T17:07:53Z) - Canary in a Coalmine: Better Membership Inference with Ensembled
Adversarial Queries [53.222218035435006]
We use adversarial tools to optimize for queries that are discriminative and diverse.
Our improvements achieve significantly more accurate membership inference than existing methods.
arXiv Detail & Related papers (2022-10-19T17:46:50Z) - Identifying the Context Shift between Test Benchmarks and Production
Data [1.2259552039796024]
There exists a performance gap between machine learning models' accuracy on dataset benchmarks and real-world production data.
We outline two methods for identifying changes in context that lead to distribution shifts and model prediction errors.
We present two case-studies to highlight the implicit assumptions underlying applied machine learning models that tend to lead to errors.
arXiv Detail & Related papers (2022-07-03T14:54:54Z) - AnoShift: A Distribution Shift Benchmark for Unsupervised Anomaly
Detection [7.829710051617368]
We introduce an unsupervised anomaly detection benchmark with data that shifts over time, built over Kyoto-2006+, a traffic dataset for network intrusion detection.
We first highlight the non-stationary nature of the data, using a basic per-feature analysis, t-SNE, and an Optimal Transport approach for measuring the overall distribution distances between years.
We validate the performance degradation over time with diverse models, ranging from classical approaches to deep learning.
arXiv Detail & Related papers (2022-06-30T17:59:22Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Evaluating Predictive Uncertainty and Robustness to Distributional Shift
Using Real World Data [0.0]
We propose metrics for general regression tasks using the Shifts Weather Prediction dataset.
We also present an evaluation of the baseline methods using these metrics.
arXiv Detail & Related papers (2021-11-08T17:32:10Z) - An Information-theoretic Approach to Distribution Shifts [9.475039534437332]
Safely deploying machine learning models to the real world is often a challenging process.
Models trained with data obtained from a specific geographic location tend to fail when queried with data obtained elsewhere.
neural networks that are fit to a subset of the population might carry some selection bias into their decision process.
arXiv Detail & Related papers (2021-06-07T16:44:21Z) - Hidden Biases in Unreliable News Detection Datasets [60.71991809782698]
We show that selection bias during data collection leads to undesired artifacts in the datasets.
We observed a significant drop (>10%) in accuracy for all models tested in a clean split with no train/test source overlap.
We suggest future dataset creation include a simple model as a difficulty/bias probe and future model development use a clean non-overlapping site and date split.
arXiv Detail & Related papers (2021-04-20T17:16:41Z) - Regularizing Models via Pointwise Mutual Information for Named Entity
Recognition [17.767466724342064]
We propose a Pointwise Mutual Information (PMI) to enhance generalization ability while outperforming an in-domain performance.
Our approach enables to debias highly correlated word and labels in the benchmark datasets.
For long-named and complex-structure entities, our method can predict these entities through debiasing on conjunction or special characters.
arXiv Detail & Related papers (2021-04-15T05:47:27Z) - The Surprising Performance of Simple Baselines for Misinformation
Detection [4.060731229044571]
We examine the performance of a broad set of modern transformer-based language models.
We present our framework as a baseline for creating and evaluating new methods for misinformation detection.
arXiv Detail & Related papers (2021-04-14T16:25:22Z) - On Cross-Dataset Generalization in Automatic Detection of Online Abuse [7.163723138100273]
We show that the benign examples in the Wikipedia Detox dataset are biased towards platform-specific topics.
We identify these examples using unsupervised topic modeling and manual inspection of topics' keywords.
For a robust dataset design, we suggest applying inexpensive unsupervised methods to inspect the collected data and downsize the non-generalizable content.
arXiv Detail & Related papers (2020-10-14T21:47:03Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
We develop a methodology for assessing the robustness of models to subpopulation shift.
We leverage the class structure underlying existing datasets to control the data subpopulations that comprise the training and test distributions.
Applying this methodology to the ImageNet dataset, we create a suite of subpopulation shift benchmarks of varying granularity.
arXiv Detail & Related papers (2020-08-11T17:04:47Z) - Learning Unbiased Representations via Mutual Information Backpropagation [36.383338079229695]
In particular, we face the case where some attributes (bias) of the data, if learned by the model, can severely compromise its generalization properties.
We propose a novel end-to-end optimization strategy, which simultaneously estimates and minimizes the mutual information between the learned representation and the data attributes.
arXiv Detail & Related papers (2020-03-13T18:06:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.