Bridging the Diagnostic Divide: Classical Computer Vision and Advanced AI methods for distinguishing ITB and CD through CTE Scans
- URL: http://arxiv.org/abs/2410.18161v1
- Date: Wed, 23 Oct 2024 17:05:27 GMT
- Title: Bridging the Diagnostic Divide: Classical Computer Vision and Advanced AI methods for distinguishing ITB and CD through CTE Scans
- Authors: Shashwat Gupta, L. Gokulnath, Akshan Aggarwal, Mahim Naz, Rajnikanth Yadav, Priyanka Bagade,
- Abstract summary: A consensus among radiologists has recognized the visceral-to-subcutaneous fat ratio as a surrogate biomarker for differentiating between ITB and CD.
We propose a novel 2D image computer vision algorithm for auto-segmenting subcutaneous fat to automate this ratio calculation.
We trained a ResNet10 model on a dataset of CTE scans with samples from ITB, CD, and normal patients, achieving an accuracy of 75%.
- Score: 2.900410045439515
- License:
- Abstract: Differentiating between Intestinal Tuberculosis (ITB) and Crohn's Disease (CD) poses a significant clinical challenge due to their similar symptoms, clinical presentations, and imaging features. This study leverages Computed Tomography Enterography (CTE) scans, deep learning, and traditional computer vision to address this diagnostic dilemma. A consensus among radiologists from renowned institutions has recognized the visceral-to-subcutaneous fat (VF/SF) ratio as a surrogate biomarker for differentiating between ITB and CD. Previously done manually, we propose a novel 2D image computer vision algorithm for auto-segmenting subcutaneous fat to automate this ratio calculation, enhancing diagnostic efficiency and objectivity. As a benchmark, we compare the results to those obtained using the TotalSegmentator tool, a popular deep learning-based software for automatic segmentation of anatomical structures, and manual calculations by radiologists. We also demonstrated the performance on 3D CT volumes using a slicing method and provided a benchmark comparison of the algorithm with the TotalSegmentator tool. Additionally, we propose a scoring approach to integrate scores from radiological features, such as the fat ratio and pulmonary TB probability, into a single score for diagnosis. We trained a ResNet10 model on a dataset of CTE scans with samples from ITB, CD, and normal patients, achieving an accuracy of 75%. To enhance interpretability and gain clinical trust, we integrated the explainable AI technique Grad-CAM with ResNet10 to explain the model's predictions. Due to the small dataset size (100 total cases), the feature-based scoring system is considered more reliable and trusted by radiologists compared to the deep learning model for disease diagnosis.
Related papers
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
This study focuses on the clinical evaluation of medical Synthetic Data Generation using Artificial Intelligence (AI) models.
The paper contributes by a) presenting a protocol for the systematic evaluation of synthetic images by medical experts and b) applying it to assess TIDE-II, a novel variational autoencoder-based model for high-resolution WCE image synthesis.
The results show that TIDE-II generates clinically relevant WCE images, helping to address data scarcity and enhance diagnostic tools.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
We generate a dataset of whole-body CT scans with $142$ voxel-level labels for 533 volumes providing comprehensive anatomical coverage.
Our proposed procedure does not rely on manual annotation during the label aggregation stage.
We release our trained unified anatomical segmentation model capable of predicting $142$ anatomical structures on CT data.
arXiv Detail & Related papers (2023-07-25T09:48:13Z) - HGT: A Hierarchical GCN-Based Transformer for Multimodal Periprosthetic
Joint Infection Diagnosis Using CT Images and Text [0.0]
Prosthetic Joint Infection (PJI) is a prevalent and severe complication.
Currently, a unified diagnostic standard incorporating both computed tomography (CT) images and numerical text data for PJI remains unestablished.
This study introduces a diagnostic method, HGT, based on deep learning and multimodal techniques.
arXiv Detail & Related papers (2023-05-29T11:25:57Z) - Enhancing COVID-19 Severity Analysis through Ensemble Methods [13.792760290422185]
This paper presents a domain knowledge-based pipeline for extracting regions of infection in COVID-19 patients.
The severity of the infection is then classified into different categories using an ensemble of three machine-learning models.
The proposed system was evaluated on a validation dataset in the AI-Enabled Medical Image Analysis Workshop and COVID-19 Diagnosis Competition.
arXiv Detail & Related papers (2023-03-13T13:59:47Z) - Diagnose Like a Radiologist: Hybrid Neuro-Probabilistic Reasoning for
Attribute-Based Medical Image Diagnosis [42.624671531003166]
We introduce a hybrid neuro-probabilistic reasoning algorithm for verifiable attribute-based medical image diagnosis.
We have successfully applied our hybrid reasoning algorithm to two challenging medical image diagnosis tasks.
arXiv Detail & Related papers (2022-08-19T12:06:46Z) - Lesion detection in contrast enhanced spectral mammography [0.0]
The recent emergence of neural networks models for the analysis of breast images has been a breakthrough in computer aided diagnostic.
This work proposes a deep-learning-based Computer Aided Diagnostic development for CESM recombined images able to detect lesions and classify cases.
arXiv Detail & Related papers (2022-07-20T06:49:02Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Weaving Attention U-net: A Novel Hybrid CNN and Attention-based Method
for Organs-at-risk Segmentation in Head and Neck CT Images [11.403827695550111]
We develop a novel hybrid deep learning approach, combining convolutional neural networks (CNNs) and the self-attention mechanism.
We show that the proposed method generated contours that closely resemble the ground truth for ten organs-at-risk (OARs)
Our results of the new Weaving Attention U-net demonstrate superior or similar performance on the segmentation of head and neck CT images.
arXiv Detail & Related papers (2021-07-10T14:27:46Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.