TabDPT: Scaling Tabular Foundation Models
- URL: http://arxiv.org/abs/2410.18164v1
- Date: Wed, 23 Oct 2024 18:00:00 GMT
- Title: TabDPT: Scaling Tabular Foundation Models
- Authors: Junwei Ma, Valentin Thomas, Rasa Hosseinzadeh, Hamidreza Kamkari, Alex Labach, Jesse C. Cresswell, Keyvan Golestan, Guangwei Yu, Maksims Volkovs, Anthony L. Caterini,
- Abstract summary: We show how to harness the power of real data to improve performance and generalization.
Our model achieves state-of-the-art performance on the CC18 (classification) and CTR23 (regression) benchmarks.
TabDPT also demonstrates strong scaling as both model size and amount of available data increase.
- Score: 20.00390825519329
- License:
- Abstract: The challenges faced by neural networks on tabular data are well-documented and have hampered the progress of tabular foundation models. Techniques leveraging in-context learning (ICL) have shown promise here, allowing for dynamic adaptation to unseen data. ICL can provide predictions for entirely new datasets without further training or hyperparameter tuning, therefore providing very fast inference when encountering a novel task. However, scaling ICL for tabular data remains an issue: approaches based on large language models cannot efficiently process numeric tables, and tabular-specific techniques have not been able to effectively harness the power of real data to improve performance and generalization. We are able to overcome these challenges by training tabular-specific ICL-based architectures on real data with self-supervised learning and retrieval, combining the best of both worlds. Our resulting model -- the Tabular Discriminative Pre-trained Transformer (TabDPT) -- achieves state-of-the-art performance on the CC18 (classification) and CTR23 (regression) benchmarks with no task-specific fine-tuning, demonstrating the adapatability and speed of ICL once the model is pre-trained. TabDPT also demonstrates strong scaling as both model size and amount of available data increase, pointing towards future improvements simply through the curation of larger tabular pre-training datasets and training larger models.
Related papers
- TabICL: A Tabular Foundation Model for In-Context Learning on Large Data [15.08819125687632]
We introduce TabICL, a foundation model for classification pretrained on synthetic datasets with up to 60K samples.
It is on par with TabPFNv2 while being systematically faster (up to 10 times) and significantly outperforms all other approaches.
On 56 datasets with over 10K samples, TabICL surpasses both TabPFNv2 and CatBoost, demonstrating the potential of ICL for large data.
arXiv Detail & Related papers (2025-02-08T13:25:04Z) - A Survey on Deep Tabular Learning [0.0]
Tabular data presents unique challenges for deep learning due to its heterogeneous nature and lack of spatial structure.
This survey reviews the evolution of deep learning models for Tabular data, from early fully connected networks (FCNs) to advanced architectures like TabNet, SAINT, TabTranSELU, and MambaNet.
arXiv Detail & Related papers (2024-10-15T20:08:08Z) - Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
Learn-Focus-Review (LFR) is a dynamic training approach that adapts to the model's learning progress.
LFR tracks the model's learning performance across data blocks (sequences of tokens) and prioritizes revisiting challenging regions of the dataset.
Compared to baseline models trained on the full datasets, LFR consistently achieved lower perplexity and higher accuracy.
arXiv Detail & Related papers (2024-09-10T00:59:18Z) - Unsupervised Pre-training with Language-Vision Prompts for Low-Data Instance Segmentation [105.23631749213729]
We propose a novel method for unsupervised pre-training in low-data regimes.
Inspired by the recently successful prompting technique, we introduce a new method, Unsupervised Pre-training with Language-Vision Prompts.
We show that our method can converge faster and perform better than CNN-based models in low-data regimes.
arXiv Detail & Related papers (2024-05-22T06:48:43Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - In-Context Data Distillation with TabPFN [11.553950697974825]
In-context data distillation (ICD) is a novel methodology that effectively eliminates these constraints by optimizing TabPFN's context.
ICD efficiently enables TabPFN to handle significantly larger datasets with a fixed memory budget, improving TabPFN's quadratic memory complexity but at the cost of a linear number of tuning steps.
arXiv Detail & Related papers (2024-02-10T15:23:45Z) - Efficient Grammatical Error Correction Via Multi-Task Training and
Optimized Training Schedule [55.08778142798106]
We propose auxiliary tasks that exploit the alignment between the original and corrected sentences.
We formulate each task as a sequence-to-sequence problem and perform multi-task training.
We find that the order of datasets used for training and even individual instances within a dataset may have important effects on the final performance.
arXiv Detail & Related papers (2023-11-20T14:50:12Z) - Towards Cross-Table Masked Pretraining for Web Data Mining [22.952238405240188]
We propose an innovative, generic, and efficient cross-table pretraining framework, dubbed as CM2.
Our experiments demonstrate CM2's state-of-the-art performance and validate that cross-table pretraining can enhance various downstream tasks.
arXiv Detail & Related papers (2023-07-10T02:27:38Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z) - Generative Table Pre-training Empowers Models for Tabular Prediction [71.76829961276032]
We propose TapTap, the first attempt that leverages table pre-training to empower models for tabular prediction.
TapTap can generate high-quality synthetic tables to support various applications, including privacy protection, low resource regime, missing value imputation, and imbalanced classification.
It can be easily combined with various backbone models, including LightGBM, Multilayer Perceptron (MLP) and Transformer.
arXiv Detail & Related papers (2023-05-16T06:37:38Z) - PTab: Using the Pre-trained Language Model for Modeling Tabular Data [5.791972449406902]
Recent studies show that neural-based models are effective in learning contextual representation for Tabular data.
We propose a novel framework PTab, using the Pre-trained language model to model Tabular data.
Our method has achieved a better average AUC score in supervised settings compared to the state-of-the-art baselines.
arXiv Detail & Related papers (2022-09-15T08:58:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.