論文の概要: Towards Understanding the Fragility of Multilingual LLMs against Fine-Tuning Attacks
- arxiv url: http://arxiv.org/abs/2410.18210v1
- Date: Wed, 23 Oct 2024 18:27:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:52:15.160851
- Title: Towards Understanding the Fragility of Multilingual LLMs against Fine-Tuning Attacks
- Title(参考訳): ファインチューニング攻撃に対する多言語LLMの脆弱性理解に向けて
- Authors: Samuele Poppi, Zheng-Xin Yong, Yifei He, Bobbie Chern, Han Zhao, Aobo Yang, Jianfeng Chi,
- Abstract要約: LLM(Large Language Models)は、その安全性に対する幅広い懸念を引き起こしている。
近年の研究では, 微調整によりLLMの安全性の整合性を容易に除去できることが示されている。
我々は,多言語LLMにおける微調整攻撃の理解をさらに進める。
- 参考スコア(独自算出の注目度): 18.208272960774337
- License:
- Abstract: Recent advancements in Large Language Models (LLMs) have sparked widespread concerns about their safety. Recent work demonstrates that safety alignment of LLMs can be easily removed by fine-tuning with a few adversarially chosen instruction-following examples, i.e., fine-tuning attacks. We take a further step to understand fine-tuning attacks in multilingual LLMs. We first discover cross-lingual generalization of fine-tuning attacks: using a few adversarially chosen instruction-following examples in one language, multilingual LLMs can also be easily compromised (e.g., multilingual LLMs fail to refuse harmful prompts in other languages). Motivated by this finding, we hypothesize that safety-related information is language-agnostic and propose a new method termed Safety Information Localization (SIL) to identify the safety-related information in the model parameter space. Through SIL, we validate this hypothesis and find that only changing 20% of weight parameters in fine-tuning attacks can break safety alignment across all languages. Furthermore, we provide evidence to the alternative pathways hypothesis for why freezing safety-related parameters does not prevent fine-tuning attacks, and we demonstrate that our attack vector can still jailbreak LLMs adapted to new languages.
- Abstract(参考訳): LLM(Large Language Models)の最近の進歩は、その安全性に対する大きな懸念を引き起こしている。
最近の研究は、LLMの安全性のアライメントは、いくつかの逆選択された命令追従例、すなわち微調整攻撃で簡単に除去できることを示した。
我々は,多言語LLMにおける微調整攻撃の理解をさらに進める。
1つの言語でいくつかの逆選択された命令追従例を用いることで、多言語 LLM は容易に妥協できる(例えば、多言語 LLM は他の言語で有害なプロンプトを拒否できない)。
本研究の目的は,安全関連情報が言語に依存しないことを仮定し,モデルパラメータ空間内の安全関連情報を識別する安全情報局在法(SIL)を提案することである。
SILを通じて、この仮説を検証し、微調整攻撃におけるウェイトパラメータの20%だけを変えるだけで、すべての言語における安全性の整合性を損なうことを発見した。
さらに, 安全関連パラメータの凍結が微調整攻撃を防止できない理由を, 代替経路仮説の証拠として提示し, 攻撃ベクトルが新しい言語に適応できることを示す。
関連論文リスト
- Compromesso! Italian Many-Shot Jailbreaks Undermine the Safety of Large Language Models [23.522660090382832]
イタリアでは、安全でない動作を誘発するために、モデルに安全でない動作を誘導する多発性ジェイルブレイクの有効性について検討する。
安全でないデモがほとんどなかったとしても、モデルが安全でない振る舞いを示しており、さらに不安なことに、この傾向は、より多くのデモで急速にエスカレートしているのです。
論文 参考訳(メタデータ) (2024-08-08T15:24:03Z) - Human-Interpretable Adversarial Prompt Attack on Large Language Models with Situational Context [49.13497493053742]
本研究は,無意味な接尾辞攻撃を状況駆動型文脈書き換えによって意味のあるプロンプトに変換することを検討する。
我々は、独立して意味のある敵の挿入と映画から派生した状況を組み合わせて、LLMを騙せるかどうかを確認します。
当社のアプローチでは,オープンソースとプロプライエタリなLLMの両方で,状況駆動型攻撃を成功させることが実証されている。
論文 参考訳(メタデータ) (2024-07-19T19:47:26Z) - Defending Large Language Models Against Jailbreak Attacks via Layer-specific Editing [14.094372002702476]
大規模言語モデル(LLM)は、広範囲の現実世界のアプリケーションで採用されつつある。
近年の研究では、LSMは故意に構築された敵のプロンプトに弱いことが示されている。
そこで本研究では,新しい防衛手法である textbfLayer-specific textbfEditing (LED) を提案する。
論文 参考訳(メタデータ) (2024-05-28T13:26:12Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
本稿では, 連続的な逆接接尾辞埋め込みを一貫性のある, 理解可能なテキストに変換するために, ASETF (Adversarial Suffix Embedding Translation Framework) を提案する。
本手法は,逆接接尾辞の計算時間を著しく短縮し,既存の手法よりもはるかに優れた攻撃成功率を実現する。
論文 参考訳(メタデータ) (2024-02-25T06:46:27Z) - Coercing LLMs to do and reveal (almost) anything [80.8601180293558]
大規模言語モデル(LLM)に対する敵対的攻撃は、有害なステートメントを作るためにモデルを「ジェイルブレイク」することができることが示されている。
LLMに対する敵対的攻撃のスペクトルは単なるジェイルブレイクよりもはるかに大きいと我々は主張する。
論文 参考訳(メタデータ) (2024-02-21T18:59:13Z) - The Language Barrier: Dissecting Safety Challenges of LLMs in
Multilingual Contexts [46.089025223336854]
本稿では,多言語にわたる大規模言語モデルが直面する安全上の課題の多様性について検討する。
我々は、最先端のLLMが高レベルの言語と低レベルの言語で書かれた同じ悪意のあるプロンプトにどのように反応するかを比較する。
論文 参考訳(メタデータ) (2024-01-23T23:12:09Z) - Text Embedding Inversion Security for Multilingual Language Models [2.790855523145802]
研究は、基礎となるモデルに関する知識がなくても、埋め込みからテキストを再構築できることを示している。
本研究は,単言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語
論文 参考訳(メタデータ) (2024-01-22T18:34:42Z) - Multilingual Jailbreak Challenges in Large Language Models [96.74878032417054]
本研究では,大規模言語モデル(LLM)における多言語ジェイルブレイク問題の存在を明らかにする。
我々は、意図しないシナリオと意図的なシナリオの2つを考えます。
安全な微調整のための多言語学習データを自動的に生成する新しいtextscSelf-Defense フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-10T09:44:06Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
SmoothLLMは,大規模言語モデル(LLM)に対するジェイルブレーキング攻撃を軽減するために設計された,最初のアルゴリズムである。
敵が生成したプロンプトが文字レベルの変化に対して脆弱であることから、我々の防衛はまず、与えられた入力プロンプトの複数のコピーをランダムに摂動し、対応する予測を集約し、敵の入力を検出する。
論文 参考訳(メタデータ) (2023-10-05T17:01:53Z) - All Languages Matter: On the Multilingual Safety of Large Language Models [96.47607891042523]
我々は、大規模言語モデル(LLM)のための最初の多言語安全ベンチマークを構築した。
XSafetyは、複数の言語ファミリーにまたがる10言語にわたる14種類の一般的な安全問題をカバーしている。
本稿では,ChatGPTの多言語安全性向上のための簡易かつ効果的なプロンプト手法を提案する。
論文 参考訳(メタデータ) (2023-10-02T05:23:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。