論文の概要: Defending Large Language Models Against Jailbreak Attacks via Layer-specific Editing
- arxiv url: http://arxiv.org/abs/2405.18166v2
- Date: Fri, 14 Jun 2024 07:27:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 18:23:16.558702
- Title: Defending Large Language Models Against Jailbreak Attacks via Layer-specific Editing
- Title(参考訳): 層別編集による大規模言語モデルのジェイルブレイク攻撃対策
- Authors: Wei Zhao, Zhe Li, Yige Li, Ye Zhang, Jun Sun,
- Abstract要約: 大規模言語モデル(LLM)は、広範囲の現実世界のアプリケーションで採用されつつある。
近年の研究では、LSMは故意に構築された敵のプロンプトに弱いことが示されている。
そこで本研究では,新しい防衛手法である textbfLayer-specific textbfEditing (LED) を提案する。
- 参考スコア(独自算出の注目度): 14.094372002702476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are increasingly being adopted in a wide range of real-world applications. Despite their impressive performance, recent studies have shown that LLMs are vulnerable to deliberately crafted adversarial prompts even when aligned via Reinforcement Learning from Human Feedback or supervised fine-tuning. While existing defense methods focus on either detecting harmful prompts or reducing the likelihood of harmful responses through various means, defending LLMs against jailbreak attacks based on the inner mechanisms of LLMs remains largely unexplored. In this work, we investigate how LLMs response to harmful prompts and propose a novel defense method termed \textbf{L}ayer-specific \textbf{Ed}iting (LED) to enhance the resilience of LLMs against jailbreak attacks. Through LED, we reveal that several critical \textit{safety layers} exist among the early layers of LLMs. We then show that realigning these safety layers (and some selected additional layers) with the decoded safe response from selected target layers can significantly improve the alignment of LLMs against jailbreak attacks. Extensive experiments across various LLMs (e.g., Llama2, Mistral) show the effectiveness of LED, which effectively defends against jailbreak attacks while maintaining performance on benign prompts. Our code is available at \url{https://github.com/ledllm/ledllm}.
- Abstract(参考訳): 大規模言語モデル(LLM)は、広範囲の現実世界のアプリケーションで採用されつつある。
最近の研究では、LLMは人間のフィードバックからの強化学習や監督された微調整を通したとしても、意図的に敵のプロンプトを作るのに弱いことが示されている。
既存の防衛方法は、有害なプロンプトの検出や、有害な応答の可能性の軽減に重点を置いているが、LDMの内部メカニズムに基づくジェイルブレイク攻撃に対するLLMの防御は、ほとんど未解明のままである。
本研究では, LLM が有害なプロンプトに対してどのように反応するかを調査し, 脱獄攻撃に対する LLM の弾力性を高めるための新しい防御法である \textbf{L}ayer-specific \textbf{Ed}iting (LED) を提案する。
LEDを通して、LLMの初期層にはいくつかの重要な \textit{safety layer} が存在することを明らかにした。
次に、これらの安全層(およびいくつかの選択された追加層)を、選択された対象層から復号された安全応答で実現することにより、脱獄攻撃に対するLCMのアライメントを大幅に改善できることを示す。
LLM(例えば、Llama2、Mistral)にわたる広範囲にわたる実験は、LEDの有効性を示している。
私たちのコードは \url{https://github.com/ledllm/ledllm} で利用可能です。
関連論文リスト
- Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
本稿では,大規模言語モデル(LLM)のための新しいプロンプトベースの防御機構であるDPPを紹介する。
従来のアプローチとは異なり、DPP は LLM の高能率を維持しながら最小の攻撃成功率 (ASR) を達成するように設計されている。
LLAMA-2-7B-ChatおよびMistral-7B-Instruct-v0.2モデルによる実験結果から,DSPの堅牢性と適応性が確認された。
論文 参考訳(メタデータ) (2024-05-30T14:40:35Z) - Protecting Your LLMs with Information Bottleneck [20.870610473199125]
本稿では,情報ボトルネック原理に基づく防御機構であるIBProtector(Information Bottleneck Protector)を紹介する。
IBProtectorは、軽量で訓練可能な抽出器によって促進されるプロンプトを選択的に圧縮し、摂動する。
IBProtectorはジェイルブレイク対策において,現在の防御方法よりも優れていた。
論文 参考訳(メタデータ) (2024-04-22T08:16:07Z) - Subtoxic Questions: Dive Into Attitude Change of LLM's Response in Jailbreak Attempts [13.176057229119408]
Prompt Jailbreakingの言語モデル(LLM)がますます注目を集めています。
本稿では,ジェイルブレイクのプロンプトに対して本質的により敏感な,対象とする一連の質問に焦点をあてて,新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-12T08:08:44Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
textbfAdaptive textbfShield Promptingを提案する。これは、MLLMを構造ベースのジェイルブレイク攻撃から守るための防御プロンプトで入力をプリペイドする。
我々の手法は、構造に基づくジェイルブレイク攻撃に対するMLLMの堅牢性を一貫して改善することができる。
論文 参考訳(メタデータ) (2024-03-14T15:57:13Z) - Tastle: Distract Large Language Models for Automatic Jailbreak Attack [9.137714258654842]
大規模言語モデル(LLM)の自動レッドチーム化のためのブラックボックスジェイルブレイクフレームワークを提案する。
我々のフレームワークは、有効性、スケーラビリティ、転送性において優れている。
また,攻撃に対する既存のジェイルブレイク防御手法の有効性についても検討した。
論文 参考訳(メタデータ) (2024-03-13T11:16:43Z) - Analyzing the Inherent Response Tendency of LLMs: Real-World
Instructions-Driven Jailbreak [26.741029482196534]
大規模言語モデル(LLM)が悪意ある指示に直面すると有害な応答を発生させる現象である。
本稿では,LDMのポテンシャルを増幅することでセキュリティ機構をバイパスし,肯定応答を生成する新しい自動ジェイルブレイク手法RADIALを提案する。
提案手法は,5つのオープンソースのLLMを用いて,英語の悪意のある命令に対する攻撃性能を良好に向上すると同時に,中国語の悪意のある命令に対するクロス言語攻撃の実行において,堅牢な攻撃性能を維持する。
論文 参考訳(メタデータ) (2023-12-07T08:29:58Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
大きな言語モデル(LLM)は有用で安全な応答を提供するように設計されている。
ジェイルブレイク」と呼ばれる 敵のプロンプトは 保護を回避できる
有効なジェイルブレイクプロンプトを生成するためにLLM自体を活用する自動フレームワークであるReNeLLMを提案する。
論文 参考訳(メタデータ) (2023-11-14T16:02:16Z) - Attack Prompt Generation for Red Teaming and Defending Large Language
Models [70.157691818224]
大規模言語モデル (LLM) は、有害なコンテンツを生成するためにLSMを誘導するレッド・チーム・アタックの影響を受けやすい。
本稿では、手動と自動の手法を組み合わせて、高品質な攻撃プロンプトを経済的に生成する統合的アプローチを提案する。
論文 参考訳(メタデータ) (2023-10-19T06:15:05Z) - Jailbreaking Black Box Large Language Models in Twenty Queries [97.29563503097995]
大規模言語モデル(LLM)は、敵のジェイルブレイクに対して脆弱である。
LLMへのブラックボックスアクセスのみのセマンティックジェイルブレイクを生成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-12T15:38:28Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
SmoothLLMは,大規模言語モデル(LLM)に対するジェイルブレーキング攻撃を軽減するために設計された,最初のアルゴリズムである。
敵が生成したプロンプトが文字レベルの変化に対して脆弱であることから、我々の防衛はまず、与えられた入力プロンプトの複数のコピーをランダムに摂動し、対応する予測を集約し、敵の入力を検出する。
論文 参考訳(メタデータ) (2023-10-05T17:01:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。