論文の概要: Bayesian optimization for robust robotic grasping using a sensorized compliant hand
- arxiv url: http://arxiv.org/abs/2410.18237v1
- Date: Wed, 23 Oct 2024 19:33:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:49:05.286833
- Title: Bayesian optimization for robust robotic grasping using a sensorized compliant hand
- Title(参考訳): センサ対応手を用いた頑健なロボットグルーピングのためのベイズ最適化
- Authors: Juan G. Lechuz-Sierra, Ana Elvira H. Martin, Ashok M. Sundaram, Ruben Martinez-Cantin, Máximo A. Roa,
- Abstract要約: 触覚センサを含む実システムにおいて,様々な把握指標を分析し,現実的な把握最適化を実現する。
ロボットシステムにおける実験的な評価は、未知の物体の把握を行う方法の有用性を示している。
- 参考スコア(独自算出の注目度): 6.693397171872655
- License:
- Abstract: One of the first tasks we learn as children is to grasp objects based on our tactile perception. Incorporating such skill in robots will enable multiple applications, such as increasing flexibility in industrial processes or providing assistance to people with physical disabilities. However, the difficulty lies in adapting the grasping strategies to a large variety of tasks and objects, which can often be unknown. The brute-force solution is to learn new grasps by trial and error, which is inefficient and ineffective. In contrast, Bayesian optimization applies active learning by adding information to the approximation of an optimal grasp. This paper proposes the use of Bayesian optimization techniques to safely perform robotic grasping. We analyze different grasp metrics to provide realistic grasp optimization in a real system including tactile sensors. An experimental evaluation in the robotic system shows the usefulness of the method for performing unknown object grasping even in the presence of noise and uncertainty inherent to a real-world environment.
- Abstract(参考訳): 子どもとして最初に学んだ課題の1つは、触覚の知覚に基づいて物体を把握することである。
このようなスキルをロボットに組み込むことで、産業プロセスの柔軟性の向上や、身体障害者への支援など、複数の応用が可能になる。
しかし、その難しさは、多種多様なタスクやオブジェクトに把握戦略を適用することにある。
ブルートフォースの解決策は、試行錯誤によって新しい把握を学習することであり、これは非効率で非効率である。
対照的に、ベイズ最適化は最適な把握の近似に情報を加えることによって能動的学習を適用している。
本稿では,ロボットグルーピングを安全に行うためのベイズ最適化手法を提案する。
触覚センサを含む実システムにおいて,様々な把握指標を分析し,現実的な把握最適化を実現する。
実環境に固有のノイズや不確実性があっても、未知の物体をつかむ方法の有用性を実験的に評価した。
関連論文リスト
- Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
本稿では,ワークステーションの注文処理,アイテムポッドの割り当て,ワークステーションでの注文処理のスケジュールを最適化することで,ウェアハウジングにおけるロボット部品対ピッカー操作を支援する。
そこで我々は, 大規模近傍探索を用いて, サブプロブレム生成に対する学習を最適化する手法を提案する。
Amazon Roboticsと共同で、我々のモデルとアルゴリズムは、最先端のアプローチよりも、実用的な問題に対するより強力なソリューションを生み出していることを示す。
論文 参考訳(メタデータ) (2024-08-29T20:22:22Z) - Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
模倣学習は、ロボットが操作スキルを取得するための強力な機械学習アルゴリズムである。
本稿では,グラフ検索と検索により,最適下実験から学習する,シンプルで効果的なアルゴリズムGSRを提案する。
GSRは、ベースラインに比べて10%から30%高い成功率、30%以上の熟練を達成できる。
論文 参考訳(メタデータ) (2024-07-22T06:12:21Z) - DiffVL: Scaling Up Soft Body Manipulation using Vision-Language Driven
Differentiable Physics [69.6158232150048]
DiffVLは、非専門家がソフトボディ操作タスクをコミュニケーションできるようにする手法である。
大規模言語モデルを用いてタスク記述を機械解釈可能な最適化対象に翻訳する。
論文 参考訳(メタデータ) (2023-12-11T14:29:25Z) - A model-free approach to fingertip slip and disturbance detection for
grasp stability inference [0.0]
触覚センサを用いた握り安定性の評価手法を提案する。
我々は、アレグロハンドに搭載された高感度のウスキン触覚センサーを用いて、我々の手法を検証、検証した。
論文 参考訳(メタデータ) (2023-11-22T09:04:26Z) - Tactile Active Inference Reinforcement Learning for Efficient Robotic
Manipulation Skill Acquisition [10.072992621244042]
触覚能動推論強化学習(Tactile Active Inference Reinforcement Learning, Tactile-AIRL)と呼ばれるロボット操作におけるスキル学習手法を提案する。
強化学習(RL)の性能を高めるために,モデルに基づく手法と本質的な好奇心をRLプロセスに統合した能動推論を導入する。
本研究では,タスクをプッシュする非包括的オブジェクトにおいて,学習効率が著しく向上することが実証された。
論文 参考訳(メタデータ) (2023-11-19T10:19:22Z) - Design Optimizer for Planar Soft-Growing Robot Manipulators [1.1888144645004388]
本研究は,ソフト成長ロボットの設計最適化のための新しいアプローチを提案する。
ソフトマニピュレータのキネマティックチェーンを最適化し、ターゲットに到達し、材料や資源の不要な過剰使用を避ける。
提案手法を最適性にアクセスするために, 提案手法を検証したところ, 解法の性能は著しく向上した。
論文 参考訳(メタデータ) (2023-10-05T08:23:17Z) - Learning to Detect Slip through Tactile Estimation of the Contact Force Field and its Entropy [6.739132519488627]
本研究では,スリップ検出をリアルタイムで連続的に行う物理インフォームド・データ駆動方式を提案する。
我々は、光学式触覚センサーであるGelSight Miniを、カスタムデザインのグリップに装着して、触覚データを収集する。
その結果,最高の分類アルゴリズムは95.61%の精度が得られることがわかった。
論文 参考訳(メタデータ) (2023-03-02T03:16:21Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
近年の研究では、現実的なロボット学習の応用において、対人訓練の効果が公平なトレードオフを起こさないことが示されている。
本研究は,ロボット学習におけるロバストネスと精度のトレードオフを再考し,最近のロバストトレーニング手法と理論の進歩により,現実のロボット応用に適した対人トレーニングが可能かどうかを解析する。
論文 参考訳(メタデータ) (2022-04-15T08:12:15Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
強化学習手法は、重要な性能を達成できるが、同じロボットプラットフォームで収集される大量のトレーニングデータを必要とする。
私たちはそれを、さまざまなロボットプラットフォームで共有される共通の構造を捉えるモデルを見つけることを目標とする、数ショットのメタラーニング問題として定式化します。
我々は,400個のロボットを用いて,実ロボットピッキング作業とシミュレーションリーチの枠組みを実験的に評価した。
論文 参考訳(メタデータ) (2021-03-05T14:16:20Z) - Never Stop Learning: The Effectiveness of Fine-Tuning in Robotic
Reinforcement Learning [109.77163932886413]
本稿では,ロボットによるロボット操作ポリシーを,政治以外の強化学習を通じて微調整することで,新たなバリエーションに適応する方法を示す。
この適応は、タスクをゼロから学習するために必要なデータの0.2%未満を使用する。
事前訓練されたポリシーを適用するという私たちのアプローチは、微調整の過程で大きなパフォーマンス向上につながります。
論文 参考訳(メタデータ) (2020-04-21T17:57:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。