Stabilizing black-box model selection with the inflated argmax
- URL: http://arxiv.org/abs/2410.18268v2
- Date: Fri, 31 Jan 2025 21:15:00 GMT
- Title: Stabilizing black-box model selection with the inflated argmax
- Authors: Melissa Adrian, Jake A. Soloff, Rebecca Willett,
- Abstract summary: We present a new approach to stabilizing model selection with theoretical stability guarantees.
Our method selects a small collection of models that all fit the data, and it is stable in that, with high probability, the removal of any training point will result in a collection of selected models that overlap with the original collection.
- Score: 8.52745154080651
- License:
- Abstract: Model selection is the process of choosing from a class of candidate models given data. For instance, methods such as the LASSO and sparse identification of nonlinear dynamics (SINDy) formulate model selection as finding a sparse solution to a linear system of equations determined by training data. However, absent strong assumptions, such methods are highly unstable: if a single data point is removed from the training set, a different model may be selected. In this paper, we present a new approach to stabilizing model selection with theoretical stability guarantees that leverages a combination of bagging and an ''inflated'' argmax operation. Our method selects a small collection of models that all fit the data, and it is stable in that, with high probability, the removal of any training point will result in a collection of selected models that overlaps with the original collection. We illustrate this method in (a) a simulation in which strongly correlated covariates make standard LASSO model selection highly unstable, (b) a Lotka-Volterra model selection problem focused on identifying how competition in an ecosystem influences species' abundances, and (c) a graph subset selection problem using cell-signaling data from proteomics. In these settings, the proposed method yields stable, compact, and accurate collections of selected models, outperforming a variety of benchmarks.
Related papers
- Be More Diverse than the Most Diverse: Online Selection of Diverse Mixtures of Generative Models [33.04472814852163]
In this work, we explore the selection of a mixture of multiple generative models.
We propose an online learning approach called Mixture Upper Confidence Bound (Mixture-UCB)
arXiv Detail & Related papers (2024-12-23T14:48:17Z) - Stable Training of Probabilistic Models Using the Leave-One-Out Maximum Log-Likelihood Objective [0.7373617024876725]
Kernel density estimation (KDE) based models are popular choices for this task, but they fail to adapt to data regions with varying densities.
An adaptive KDE model is employed to circumvent this, where each kernel in the model has an individual bandwidth.
A modified expectation-maximization algorithm is employed to accelerate the optimization speed reliably.
arXiv Detail & Related papers (2023-10-05T14:08:42Z) - A model-free feature selection technique of feature screening and random
forest based recursive feature elimination [0.0]
We propose a model-free feature selection method for ultra-high dimensional data with mass features.
We show that the proposed method is selection consistent and $L$ consistent under weak regularity conditions.
arXiv Detail & Related papers (2023-02-15T03:39:16Z) - MILO: Model-Agnostic Subset Selection Framework for Efficient Model
Training and Tuning [68.12870241637636]
We propose MILO, a model-agnostic subset selection framework that decouples the subset selection from model training.
Our empirical results indicate that MILO can train models $3times - 10 times$ faster and tune hyperparameters $20times - 75 times$ faster than full-dataset training or tuning without performance.
arXiv Detail & Related papers (2023-01-30T20:59:30Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - A Statistical-Modelling Approach to Feedforward Neural Network Model Selection [0.8287206589886881]
Feedforward neural networks (FNNs) can be viewed as non-linear regression models.
A novel model selection method is proposed using the Bayesian information criterion (BIC) for FNNs.
The choice of BIC over out-of-sample performance leads to an increased probability of recovering the true model.
arXiv Detail & Related papers (2022-07-09T11:07:04Z) - Universal and data-adaptive algorithms for model selection in linear
contextual bandits [52.47796554359261]
We consider the simplest non-trivial instance of model-selection: distinguishing a simple multi-armed bandit problem from a linear contextual bandit problem.
We introduce new algorithms that explore in a data-adaptive manner and provide guarantees of the form $mathcalO(dalpha T1- alpha)$.
Our approach extends to model selection among nested linear contextual bandits under some additional assumptions.
arXiv Detail & Related papers (2021-11-08T18:05:35Z) - A linearized framework and a new benchmark for model selection for
fine-tuning [112.20527122513668]
Fine-tuning from a collection of models pre-trained on different domains is emerging as a technique to improve test accuracy in the low-data regime.
We introduce two new baselines for model selection -- Label-Gradient and Label-Feature Correlation.
Our benchmark highlights accuracy gain with model zoo compared to fine-tuning Imagenet models.
arXiv Detail & Related papers (2021-01-29T21:57:15Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z) - Semi-nonparametric Latent Class Choice Model with a Flexible Class
Membership Component: A Mixture Model Approach [6.509758931804479]
The proposed model formulates the latent classes using mixture models as an alternative approach to the traditional random utility specification.
Results show that mixture models improve the overall performance of latent class choice models.
arXiv Detail & Related papers (2020-07-06T13:19:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.