論文の概要: NexusIndex: Integrating Advanced Vector Indexing and Multi-Model Embeddings for Robust Fake News Detection
- arxiv url: http://arxiv.org/abs/2410.18294v1
- Date: Wed, 23 Oct 2024 21:59:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:51:33.020908
- Title: NexusIndex: Integrating Advanced Vector Indexing and Multi-Model Embeddings for Robust Fake News Detection
- Title(参考訳): NexusIndex:ロバストフェイクニュース検出のための高度なベクトルインデックスとマルチモデル埋め込みの統合
- Authors: Solmaz Seyed Monir, Dongfang Zhao,
- Abstract要約: NexusIndexは、偽ニュース検出を強化する新しいフレームワークとモデルである。
高度な言語モデル、イノベーティブなFAISSNexusIndexレイヤ、アテンションメカニズムを統合している。
実験の結果,NexusIndexは各種データセットの効率と精度において,最先端の手法よりも優れていた。
- 参考スコア(独自算出の注目度): 1.1701842638497677
- License:
- Abstract: The proliferation of fake news on digital platforms has underscored the need for robust and scalable detection mechanisms. Traditional methods often fall short in handling large and diverse datasets due to limitations in scalability and accuracy. In this paper, we propose NexusIndex, a novel framework and model that enhances fake news detection by integrating advanced language models, an innovative FAISSNexusIndex layer, and attention mechanisms. Our approach leverages multi-model embeddings to capture rich contextual and semantic nuances, significantly improving text interpretation and classification accuracy. By transforming articles into high-dimensional embeddings and indexing them efficiently, NexusIndex facilitates rapid similarity searches across extensive collections of news articles. The FAISSNexusIndex layer further optimizes this process, enabling real-time detection and enhancing the system's scalability and performance. Our experimental results demonstrate that NexusIndex outperforms state-of-the-art methods in efficiency and accuracy across diverse datasets.
- Abstract(参考訳): デジタルプラットフォームにおけるフェイクニュースの拡散は、堅牢でスケーラブルな検出メカニズムの必要性を暗示している。
従来のメソッドは、スケーラビリティと正確性に制限があるため、大規模で多様なデータセットを扱うのに不足することが多い。
本稿では,高度な言語モデルと革新的なFAISSNexusIndexレイヤとアテンションメカニズムを統合し,偽ニュース検出を向上する新しいフレームワークとモデルであるNexusIndexを提案する。
提案手法は,マルチモデル埋め込みを利用して,文脈や意味の豊かなニュアンスを捕捉し,テキストの解釈や分類精度を大幅に向上させる。
記事を高次元の埋め込みに変換し、それらを効率的にインデックス化することで、NexusIndexはニュース記事のコレクションをまたいだ高速な類似性検索を容易にする。
FAISSNexusIndexレイヤはこのプロセスをさらに最適化し、リアルタイムの検出を可能にし、システムのスケーラビリティとパフォーマンスを向上させる。
実験の結果,NexusIndexは各種データセットの効率と精度において,最先端の手法よりも優れていた。
関連論文リスト
- MMCFND: Multimodal Multilingual Caption-aware Fake News Detection for Low-resource Indic Languages [0.4062349563818079]
Indic Fake News Detection (MMIFND) のためのマルチモーダル多言語データセットを提案する。
この厳密にキュレートされたデータセットは、ヒンディー語、ベンガル語、マラタイ語、マラヤラム語、タミル語、グジャラート語、パンジャービ語にまたがる28,085のインスタンスで構成されている。
フェイクニュース検出(MMCFND)のためのマルチモーダルキャプション対応フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-14T11:59:33Z) - Semi-Parametric Retrieval via Binary Token Index [71.78109794895065]
Semi-parametric Vocabulary Disentangled Retrieval (SVDR) は、新しい半パラメトリック検索フレームワークである。
既存のニューラル検索手法に似た、高い有効性のための埋め込みベースのインデックスと、従来の用語ベースの検索に似た、迅速かつ費用対効果の高いセットアップを可能にするバイナリトークンインデックスの2つのタイプをサポートする。
埋め込みベースインデックスを使用する場合の高密度検索器DPRよりも3%高いトップ1検索精度と、バイナリトークンインデックスを使用する場合のBM25よりも9%高いトップ1検索精度を実現する。
論文 参考訳(メタデータ) (2024-05-03T08:34:13Z) - Finding fake reviews in e-commerce platforms by using hybrid algorithms [0.0]
そこで我々は, 感情分析のための革新的なアンサンブルアプローチを提案し, 偽レビューの発見を行う。
私たちのアンサンブルアーキテクチャは、さまざまなモデルを戦略的に組み合わせて、固有の弱点を緩和しながら、その強みを活かします。
本研究は, 偽レビュー発見の最先端化において, アンサンブル技術の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2024-04-09T14:25:27Z) - Differentiable Meta Multigraph Search with Partial Message Propagation
on Heterogeneous Information Networks [18.104982772430102]
異種情報ネットワーク(HIN)上でのニューラルネットワーク設計を自動的に最適化するPMMM(Partial Message Meta Multigraph Search)を提案する。
PMMMは、意味のあるメタマルチグラフを探すために効率的な微分可能なフレームワークを採用しており、メタグラフよりも柔軟で複雑なセマンティックな関係を捉えることができる。
我々の手法は、最先端の異種GNNより優れ、意味のあるメタマルチグラフを見つけ、より安定している。
論文 参考訳(メタデータ) (2022-11-27T07:35:42Z) - Multimodal Fake News Detection via CLIP-Guided Learning [26.093561485807832]
本稿では、FND-CLIPフレームワーク、すなわち、コントラスト言語-画像事前学習(CLIP)に基づくマルチモーダルフェイクニュース検出ネットワークを提案する。
対象とするマルチモーダルニュースから,ResNetベースのエンコーダ,BERTベースのエンコーダ,および2つのペアワイズCLIPエンコーダを用いて,画像とテキストから深層表現を抽出する。
マルチモーダル特徴は、2つのモーダルの標準化されたクロスモーダル類似性によって重み付けられたCLIP生成特徴の連結である。
論文 参考訳(メタデータ) (2022-05-28T02:43:18Z) - Real-Time Scene Text Detection with Differentiable Binarization and
Adaptive Scale Fusion [62.269219152425556]
セグメンテーションに基づくシーンテキスト検出手法はシーンテキスト検出分野において大きな注目を集めている。
本稿では,二項化処理をセグメンテーションネットワークに統合する分散二項化(DB)モジュールを提案する。
アダプティブ・スケール・フュージョン (ASF) モジュールは, 異なるスケールの特徴を適応的に融合させることにより, スケールのロバスト性を向上させる。
論文 参考訳(メタデータ) (2022-02-21T15:30:14Z) - Retrieve Fast, Rerank Smart: Cooperative and Joint Approaches for
Improved Cross-Modal Retrieval [80.35589927511667]
画像中のすべての単語やオブジェクトに係わるクロスアテンション機構を備えたTransformerベースのアーキテクチャを頼りに、クロスモーダル検索プロセスのテキストとビジュアルインプットへの最先端のアプローチ。
事前学習したテキスト画像のマルチモーダルモデルを効率的な検索モデルに変換する新しい微調整フレームワークを提案する。
我々は,モノリンガル,マルチリンガル,ゼロショットにおける一連の標準クロスモーダル検索ベンチマーク実験を行い,最先端クロスエンコーダに対する精度向上と大幅な効率向上を実証した。
論文 参考訳(メタデータ) (2021-03-22T15:08:06Z) - ProxyFAUG: Proximity-based Fingerprint Augmentation [81.15016852963676]
ProxyFAUGはルールベースで近接性に基づく指紋増強法である。
このデータセット上で最高のパフォーマンスの測位法は、中央値エラーで40%改善され、平均誤差で6%向上した。
論文 参考訳(メタデータ) (2021-02-04T15:59:30Z) - A Pluggable Learned Index Method via Sampling and Gap Insertion [48.900186573181735]
データベースインデックスは、データ検索を促進し、現実世界のシステムにおける幅広いアプリケーションに役立つ。
近年,隠れて有用なデータ分布を学習するために,learning indexという新しいインデックスが提案されている。
学習指標の学習効率と学習効率を高めるための2つの一般的なテクニックとプラグイン可能なテクニックを研究します。
論文 参考訳(メタデータ) (2021-01-04T07:17:23Z) - Fusion of CNNs and statistical indicators to improve image
classification [65.51757376525798]
畳み込みネットワークは過去10年間、コンピュータビジョンの分野を支配してきた。
この傾向を長引かせる主要な戦略は、ネットワーク規模の拡大によるものだ。
我々は、異種情報ソースを追加することは、より大きなネットワークを構築するよりもCNNにとって費用対効果が高いと仮定している。
論文 参考訳(メタデータ) (2020-12-20T23:24:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。