Robust and Explainable Depression Identification from Speech Using Vowel-Based Ensemble Learning Approaches
- URL: http://arxiv.org/abs/2410.18298v1
- Date: Wed, 23 Oct 2024 22:03:09 GMT
- Title: Robust and Explainable Depression Identification from Speech Using Vowel-Based Ensemble Learning Approaches
- Authors: Kexin Feng, Theodora Chaspari,
- Abstract summary: This study investigates explainable machine learning algorithms for identifying depression from speech.
Two methods are explored: a "bottom-up" approach with 8 models predicting individual Patient Health Questionnaire-8 (PHQ-8) item scores, and a "top-down" approach using a Mixture of Experts (MoE) with a router module for assessing depression.
Both methods depict performance comparable to state-of-the-art baselines, demonstrating severity and reduced susceptibility to dataset mean/median values.
- Score: 5.102770724328495
- License:
- Abstract: This study investigates explainable machine learning algorithms for identifying depression from speech. Grounded in evidence from speech production that depression affects motor control and vowel generation, pre-trained vowel-based embeddings, that integrate semantically meaningful linguistic units, are used. Following that, an ensemble learning approach decomposes the problem into constituent parts characterized by specific depression symptoms and severity levels. Two methods are explored: a "bottom-up" approach with 8 models predicting individual Patient Health Questionnaire-8 (PHQ-8) item scores, and a "top-down" approach using a Mixture of Experts (MoE) with a router module for assessing depression severity. Both methods depict performance comparable to state-of-the-art baselines, demonstrating robustness and reduced susceptibility to dataset mean/median values. System explainability benefits are discussed highlighting their potential to assist clinicians in depression diagnosis and screening.
Related papers
- Language-Agnostic Analysis of Speech Depression Detection [2.5764071253486636]
This work analyzes automatic speech-based depression detection across two languages, English and Malayalam.
A CNN model is trained to identify acoustic features associated with depression in speech, focusing on both languages.
Our findings and collected data could contribute to the development of language-agnostic speech-based depression detection systems.
arXiv Detail & Related papers (2024-09-23T07:35:56Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
We employ a Large Language Model (LLM) to convert unstructured psychological interviews into structured questionnaires spanning various psychiatric and personality domains.
The obtained answers are coded as features, which are used to predict standardized psychiatric measures of depression (PHQ-8) and PTSD (PCL-C)
arXiv Detail & Related papers (2024-06-09T09:03:11Z) - Evaluating Lexicon Incorporation for Depression Symptom Estimation [2.149662952755067]
This paper explores the impact of incorporating sentiment, emotion, and domain-specific lexicons into a transformer-based model for depression symptom estimation.
Results show that the introduction of external knowledge within pre-trained language models can be beneficial for prediction performance.
New state-of-the-art results are obtained for the estimation of depression level over patient-therapist interviews.
arXiv Detail & Related papers (2024-04-30T08:41:06Z) - Hierarchical attention interpretation: an interpretable speech-level
transformer for bi-modal depression detection [6.561362931802501]
Depression is a common mental disorder. Automatic depression detection tools using speech, enabled by machine learning, help early screening of depression.
This paper addresses two limitations that may hinder the clinical implementations of such tools: noise resulting from segment-level labelling and a lack of model interpretability.
arXiv Detail & Related papers (2023-09-23T20:48:58Z) - DepreSym: A Depression Symptom Annotated Corpus and the Role of LLMs as
Assessors of Psychological Markers [3.5511184956329727]
We present the DepreSym dataset, consisting of 21580 sentences annotated according to their relevance to the Beck Depression Inventory-II symptoms.
This dataset serves as a valuable resource for advancing the development of models that incorporate depressive markers such as clinical symptoms.
arXiv Detail & Related papers (2023-08-21T14:44:31Z) - The Relationship Between Speech Features Changes When You Get Depressed:
Feature Correlations for Improving Speed and Performance of Depression
Detection [69.88072583383085]
This work shows that depression changes the correlation between features extracted from speech.
Using such an insight can improve the training speed and performance of depression detectors based on SVMs and LSTMs.
arXiv Detail & Related papers (2023-07-06T09:54:35Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
This paper presents an efficient semantic pipeline to study depression severity in individuals based on their social media writings.
We use test user sentences for producing semantic rankings over an index of representative training sentences corresponding to depressive symptoms and severity levels.
We evaluate our methods on two Reddit-based benchmarks, achieving 30% improvement over state of the art in terms of measuring depression severity.
arXiv Detail & Related papers (2022-11-14T18:47:26Z) - Bayesian Networks for the robust and unbiased prediction of depression
and its symptoms utilizing speech and multimodal data [65.28160163774274]
We apply a Bayesian framework to capture the relationships between depression, depression symptoms, and features derived from speech, facial expression and cognitive game data collected at thymia.
arXiv Detail & Related papers (2022-11-09T14:48:13Z) - NUVA: A Naming Utterance Verifier for Aphasia Treatment [49.114436579008476]
Assessment of speech performance using picture naming tasks is a key method for both diagnosis and monitoring of responses to treatment interventions by people with aphasia (PWA)
Here we present NUVA, an utterance verification system incorporating a deep learning element that classifies 'correct' versus'incorrect' naming attempts from aphasic stroke patients.
When tested on eight native British-English speaking PWA the system's performance accuracy ranged between 83.6% to 93.6%, with a 10-fold cross-validation mean of 89.5%.
arXiv Detail & Related papers (2021-02-10T13:00:29Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
Depression is among the most prevalent mental disorders, affecting millions of people of all ages globally.
Machine learning techniques have shown effective in enabling automated detection and prediction of depression for early intervention and treatment.
We introduce a novel deep multi-task recurrent neural network to tackle this challenge, in which depression classification is jointly optimized with two auxiliary tasks.
arXiv Detail & Related papers (2020-12-05T05:14:14Z) - Multimodal Depression Severity Prediction from medical bio-markers using
Machine Learning Tools and Technologies [0.0]
Depression has been a leading cause of mental-health illnesses across the world.
Using behavioural cues to automate depression diagnosis and stage prediction in recent years has relatively increased.
The absence of labelled behavioural datasets and a vast amount of possible variations prove to be a major challenge in accomplishing the task.
arXiv Detail & Related papers (2020-09-11T20:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.