Irregular Tensor Low-Rank Representation for Hyperspectral Image Representation
- URL: http://arxiv.org/abs/2410.18388v2
- Date: Sat, 15 Feb 2025 13:44:29 GMT
- Title: Irregular Tensor Low-Rank Representation for Hyperspectral Image Representation
- Authors: Bo Han, Yuheng Jia, Hui Liu, Junhui Hou,
- Abstract summary: Spectral variations pose a common challenge in analyzing hyperspectral images (HSI)
Low-rank tensor representation has emerged as a robust strategy, leveraging inherent correlations within HSI data.
We propose a novel model for irregular tensor lowrank representation tailored to efficiently model irregular 3D cubes.
- Score: 71.69331824668954
- License:
- Abstract: Spectral variations pose a common challenge in analyzing hyperspectral images (HSI). To address this, low-rank tensor representation has emerged as a robust strategy, leveraging inherent correlations within HSI data. However, the spatial distribution of ground objects in HSIs is inherently irregular, existing naturally in tensor format, with numerous class-specific regions manifesting as irregular tensors. Current low-rank representation techniques are designed for regular tensor structures and overlook this fundamental irregularity in real-world HSIs, leading to performance limitations. To tackle this issue, we propose a novel model for irregular tensor low-rank representation tailored to efficiently model irregular 3D cubes. By incorporating a non-convex nuclear norm to promote low-rankness and integrating a global negative low-rank term to enhance the discriminative ability, our proposed model is formulated as a convex-concave optimization problem and solved using an alternative augmented Lagrangian method. Experimental validation conducted on four public datasets demonstrates the superior performance of our method compared to existing state-of-the-art approaches. The code is publicly available at https://github.com/hb-studying/ITLRR.
Related papers
- Low-Rank Tensor Completion via Novel Sparsity-Inducing Regularizers [30.920908325825668]
To alleviate l1-norm in the low-rank tensor completion problem, non-rank surrogates/regularizers have been suggested.
These regularizers are applied to nuclear-rank restoration, and efficient algorithms based on the method of multipliers are proposed.
arXiv Detail & Related papers (2023-10-10T01:00:13Z) - Spectral Enhanced Rectangle Transformer for Hyperspectral Image
Denoising [64.11157141177208]
We propose a spectral enhanced rectangle Transformer to model the spatial and spectral correlation in hyperspectral images.
For the former, we exploit the rectangle self-attention horizontally and vertically to capture the non-local similarity in the spatial domain.
For the latter, we design a spectral enhancement module that is capable of extracting global underlying low-rank property of spatial-spectral cubes to suppress noise.
arXiv Detail & Related papers (2023-04-03T09:42:13Z) - Low-Rank Tensor Function Representation for Multi-Dimensional Data
Recovery [52.21846313876592]
Low-rank tensor function representation (LRTFR) can continuously represent data beyond meshgrid with infinite resolution.
We develop two fundamental concepts for tensor functions, i.e., the tensor function rank and low-rank tensor function factorization.
Our method substantiates the superiority and versatility of our method as compared with state-of-the-art methods.
arXiv Detail & Related papers (2022-12-01T04:00:38Z) - Hyperspectral Image Denoising Using Non-convex Local Low-rank and Sparse
Separation with Spatial-Spectral Total Variation Regularization [49.55649406434796]
We propose a novel non particular approach to robust principal component analysis for HSI denoising.
We develop accurate approximations to both rank and sparse components.
Experiments on both simulated and real HSIs demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-01-08T11:48:46Z) - Hyperspectral Mixed Noise Removal via Subspace Representation and
Weighted Low-rank Tensor Regularization [10.131033322742363]
We employ subspace representation and the weighted low-rank tensor regularization (SWLRTR) into the model to remove the mixed noise in the hyperspectral image.
Experiments demonstrate that the SWLRTR method performs better than other hyperspectral denoising methods quantitatively and visually.
arXiv Detail & Related papers (2021-11-13T05:30:56Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
This paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE)
Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region.
Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity.
arXiv Detail & Related papers (2021-03-25T09:31:41Z) - Towards Flexible Sparsity-Aware Modeling: Automatic Tensor Rank Learning
Using The Generalized Hyperbolic Prior [24.848237413017937]
rank learning for canonical polyadic decomposition (CPD) has long been deemed as an essential yet challenging problem.
The optimal determination of a tensor rank is known to be a non-deterministic-time hard (NP-hard) task.
In this paper, we introduce a more advanced generalized hyperbolic (GH) prior to the probabilistic modeling model, which is more flexible to adapt to different levels of sparsity.
arXiv Detail & Related papers (2020-09-05T06:07:21Z) - Hyperspectral Image Denoising with Partially Orthogonal Matrix Vector
Tensor Factorization [42.56231647066719]
Hyperspectral image (HSI) has some advantages over natural image for various applications due to the extra spectral information.
During the acquisition, it is often contaminated by severe noises including Gaussian noise, impulse noise, deadlines, and stripes.
We present a HSI restoration method named smooth and robust low rank tensor recovery.
arXiv Detail & Related papers (2020-06-29T02:10:07Z) - Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation [105.33409035876691]
This paper explores the problem of multi-view spectral clustering (MVSC) based on tensor low-rank modeling.
We design a novel structured tensor low-rank norm tailored to MVSC.
We show that the proposed method outperforms state-of-the-art methods to a significant extent.
arXiv Detail & Related papers (2020-04-30T11:52:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.