論文の概要: RediSwap: MEV Redistribution Mechanism for CFMMs
- arxiv url: http://arxiv.org/abs/2410.18434v1
- Date: Thu, 24 Oct 2024 05:11:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:48:15.810542
- Title: RediSwap: MEV Redistribution Mechanism for CFMMs
- Title(参考訳): RediSwap:CFMMのためのMEV再配布機構
- Authors: Mengqian Zhang, Sen Yang, Fan Zhang,
- Abstract要約: アプリケーションレベルでの最大抽出可能価値(MEV)の取得と,ユーザおよび流動性プロバイダ間での返金を目的とした,新たなAMMであるRediSwapを紹介した。
RediSwapの中核となるのは、AMMプール内の調停機会を管理するMEV再分配機構である。
我々は、我々のメカニズムがインセンティブに適合し、シビルに耐性があることを証明し、仲裁者が容易に参加できることを証明した。
- 参考スコア(独自算出の注目度): 6.475701705193783
- License:
- Abstract: Automated Market Makers (AMMs) are essential to decentralized finance, offering continuous liquidity and enabling intermediary-free trading on blockchains. However, participants in AMMs are vulnerable to Maximal Extractable Value (MEV) exploitation. Users face threats such as front-running, back-running, and sandwich attacks, while liquidity providers (LPs) incur the loss-versus-rebalancing (LVR). In this paper, we introduce RediSwap, a novel AMM designed to capture MEV at the application level and refund it fairly among users and liquidity providers. At its core, RediSwap features an MEV-redistribution mechanism that manages arbitrage opportunities within the AMM pool. We formalize the mechanism design problem and the desired game-theoretical properties. A central insight underpinning our mechanism is the interpretation of the maximal MEV value as the sum of LVR and individual user losses. We prove that our mechanism is incentive-compatible and Sybil-proof, and demonstrate that it is easy for arbitrageurs to participate. We empirically compared RediSwap with existing solutions by replaying historical AMM trades. Our results suggest that RediSwap can achieve better execution than UniswapX in 89% of trades and reduce LPs' loss to under 0.5% of the original LVR in most cases.
- Abstract(参考訳): 自動市場メーカー(AMM)は、分散金融に不可欠であり、継続的な流動性を提供し、ブロックチェーン上の仲介不要な取引を可能にする。
しかし、AMMの参加者は、最大抽出可能な価値(MEV)の搾取に弱い。
ユーザは、フロントラン、バックラン、サンドイッチアタックなどの脅威に直面し、一方、流動性プロバイダ(LP)は損失対リバランシング(LVR)を発生させる。
本稿では,アプリケーションレベルでMEVを捕捉し,ユーザおよび流動性提供者間でかなりの額の返金を行う新しいAMMであるRediSwapを紹介する。
RediSwapの中核となるのは、AMMプール内の調停機会を管理するMEV再分配機構である。
機構設計問題と所望のゲーム理論特性を定式化する。
我々のメカニズムを支える中心的な洞察は、LVRと個人ユーザーの損失の合計として、最大MEV値の解釈である。
我々は、我々のメカニズムがインセンティブに適合し、シビルに耐性があることを証明し、仲裁者が容易に参加できることを証明した。
我々はRediSwapを過去のAMM取引を再生することで既存のソリューションと比較した。
その結果、RediSwapは取引の89%でUnixwapXよりも優れた実行を実現でき、ほとんどの場合、LPの損失は元のLVRの0.5%以下に抑えられることが示唆された。
関連論文リスト
- Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
本稿では、事前学習された高密度LCMをより小さなMoEモデルに変換する新しいフレームワークRead-MEを提案する。
当社のアプローチでは,専門家の抽出にアクティベーション空間を用いる。
Read-MEは、同様のスケールの他の人気のあるオープンソース高密度モデルよりも優れています。
論文 参考訳(メタデータ) (2024-10-24T19:48:51Z) - Designing Redistribution Mechanisms for Reducing Transaction Fees in
Blockchains [10.647087323578477]
トランザクションフィーメカニズム(TFM)は、どのユーザトランザクションをブロックに含め、支払いを決定するかを決定する。
本稿では、取引手数料を最小限に抑えるため、VCG支払いを再分配するトランザクションフィー再分配メカニズム(TFRM)を提案する。
この結果から、TFRMはパブリックブロックチェーンにおけるトランザクション手数料の削減に期待できる新たな方向性を提供することがわかった。
論文 参考訳(メタデータ) (2024-01-24T07:09:32Z) - Towards a Theory of Maximal Extractable Value II: Uncertainty [4.07926531936425]
最大抽出可能値(英: Maximal Extractable Value、MEV)は、分散システムで一般的に見られる一時的な独占力によって抽出できる値である。
この抽出は、トランザクションの提出時のユーザのプライバシの欠如と、トランザクションの再注文、追加、および/または検閲を行う独占バリデーターの能力に起因している。
公平な注文手法も経済メカニズムも,任意の支払関数に対して個別にMEVを緩和できないことを示す。
論文 参考訳(メタデータ) (2023-09-25T15:01:11Z) - Onchain Sports Betting using UBET Automated Market Maker [45.410818354926406]
分散スポーツの賭けには、効率的な流動性提供のために自動市場メーカー(AMM)が必要である。
Uniswapのような既存のAMMは、公正な確率に一致せず、流動性プロバイダーのリスクを生み出している。
本稿では、スマートコントラクトとアルゴリズムを活用して、スポーツオッズを公平に価格設定するUBET AMM(UAMM)を紹介する。
論文 参考訳(メタデータ) (2023-08-18T02:19:30Z) - Semantic Information Marketing in The Metaverse: A Learning-Based
Contract Theory Framework [68.8725783112254]
仮想サービスプロバイダ(VSP)によるインセンティブのメカニズム設計の問題に対処し,センサデータ販売にIoTデバイスを採用。
帯域幅が限られているため,センサIoTデバイスによる配信データを削減するためにセマンティック抽出アルゴリズムを提案する。
本稿では,新しい反復型契約設計を提案し,マルチエージェント強化学習(MARL)の新たな変種を用いて,モデル付き多次元契約問題の解法を提案する。
論文 参考訳(メタデータ) (2023-02-22T15:52:37Z) - Uniswap Liquidity Provision: An Online Learning Approach [49.145538162253594]
分散取引所(DEX)は、テクノロジーを活用した新しいタイプのマーケットプレイスである。
そのようなDECの1つ、Unixwap v3は、流動性プロバイダが資金のアクティブな価格間隔を指定することで、より効率的に資金を割り当てることを可能にする。
これにより、価格間隔を選択するための最適な戦略を見出すことが問題となる。
我々は、この問題を非確率的な報酬を伴うオンライン学習問題として定式化する。
論文 参考訳(メタデータ) (2023-02-01T17:21:40Z) - QLAMMP: A Q-Learning Agent for Optimizing Fees on Automated Market
Making Protocols [5.672898304129217]
本稿では,所定のAMMプロトコルの最適料金率を学習し,係数を活用するQ-Learning Agent for Market Making Protocols (QLAMMP) を開発する。
QLAMMPは、すべてのシミュレートされたテスト条件下で、その静的な性能を一貫して上回っていることを示す。
論文 参考訳(メタデータ) (2022-11-28T00:30:45Z) - Predictive Crypto-Asset Automated Market Making Architecture for
Decentralized Finance using Deep Reinforcement Learning [0.0]
本研究は、オンチェーンの保持と決済機能を備えた引用駆動型予測自動市場メーカー(AMM)プラットフォームを提案する。
提案アーキテクチャは,暗号AMMプロトコルであるUnixwap V3への拡張であり,分散とすべり損失の低減を目的とした新たな市場均衡価格を利用する。
論文 参考訳(メタデータ) (2022-09-28T01:13:22Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
強化学習 (Reinforcement Learning, RL) は, 意思決定および最適制御プロセスのための有望な解法として広く研究されている。
本稿では,Adaptive ADMM (asI-ADMM)アルゴリズムを提案する。
実験の結果,提案アルゴリズムは通信コストやスケーラビリティの観点から技術状況よりも優れており,複雑なIoT環境に適応できることがわかった。
論文 参考訳(メタデータ) (2021-06-30T16:49:07Z) - BERTifying the Hidden Markov Model for Multi-Source Weakly Supervised
Named Entity Recognition [57.2201011783393]
条件付き隠れマルコフモデル(CHMM)
CHMMは、入力トークンのBERT埋め込みからトークン単位の遷移と放出確率を予測する。
BERTベースのNERモデルを微調整し、ラベルをCHMMで推論する。
論文 参考訳(メタデータ) (2021-05-26T21:18:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。