論文の概要: Maximal Extractable Value in Decentralized Finance: Taxonomy, Detection, and Mitigation
- arxiv url: http://arxiv.org/abs/2411.03327v1
- Date: Tue, 22 Oct 2024 12:11:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 12:31:18.684487
- Title: Maximal Extractable Value in Decentralized Finance: Taxonomy, Detection, and Mitigation
- Title(参考訳): 分散型金融における最大抽出価値--分類・検出・緩和
- Authors: Huned Materwala, Shraddha M. Naik, Aya Taha, Tala Abdulrahman Abed, Davor Svetinovic,
- Abstract要約: 最大抽出可能な値(MEV)は、ブロックチェーン上の金融トランザクションから抽出することができる。
MEVは、DeFiエコシステムのセキュリティ、効率、分散化目標を破壊し、金融損失とコンセンサス不安定を引き起こす。
この調査は、研究者、開発者、利害関係者、政策立案者に貴重な洞察を提供する。
- 参考スコア(独自算出の注目度): 0.534772724436823
- License:
- Abstract: Decentralized Finance (DeFi) leverages blockchain-enabled smart contracts to deliver automated and trustless financial services without the need for intermediaries. However, the public visibility of financial transactions on the blockchain can be exploited, as participants can reorder, insert, or remove transactions to extract value, often at the expense of others. This extracted value is known as the Maximal Extractable Value (MEV). MEV causes financial losses and consensus instability, disrupting the security, efficiency, and decentralization goals of the DeFi ecosystem. Therefore, it is crucial to analyze, detect, and mitigate MEV to safeguard DeFi. Our comprehensive survey offers a holistic view of the MEV landscape in the DeFi ecosystem. We present an in-depth understanding of MEV through a novel taxonomy of MEV transactions supported by real transaction examples. We perform a critical comparative analysis of various MEV detection approaches, evaluating their effectiveness in identifying different transaction types. Furthermore, we assess different categories of MEV mitigation strategies and discuss their limitations. We identify the challenges of current mitigation and detection approaches and discuss potential solutions. This survey provides valuable insights for researchers, developers, stakeholders, and policymakers, helping to curb and democratize MEV for a more secure and efficient DeFi ecosystem.
- Abstract(参考訳): DeFi(Decentralized Finance)は、ブロックチェーン対応のスマートコントラクトを活用して、仲介を必要とせずに、自動化された信頼性のない金融サービスを提供する。
しかし、ブロックチェーン上での金融トランザクションの公開可視性は、参加者が他の参加者を犠牲にして、価値を抽出するためにトランザクションを再注文、挿入、削除できるため、悪用される可能性がある。
この抽出された値は、最大抽出可能値(MEV)として知られている。
MEVは、DeFiエコシステムのセキュリティ、効率、分散化目標を破壊し、金融損失とコンセンサス不安定を引き起こす。
したがって、DeFiの保護のためにMEVを分析し、検出し、緩和することが重要である。
私たちの総合的な調査は、DeFiエコシステムにおけるMEVの全体像を概観しています。
本稿では、実際の取引例で支援されたMEVトランザクションの新しい分類法を通して、MEVの深い理解を示す。
我々は、様々なMEV検出手法の批判的比較分析を行い、異なるトランザクションタイプを特定する上での有効性を評価する。
さらに,MEV緩和戦略のさまざまなカテゴリを評価し,その限界について議論する。
我々は、現在の緩和と検出アプローチの課題を特定し、潜在的な解決策について議論する。
この調査は、研究者、開発者、利害関係者、政策立案者に貴重な洞察を与え、よりセキュアで効率的なDeFiエコシステムのためにMEVを抑圧し、民主化するのに役立ちます。
関連論文リスト
- Decoding Decentralized Finance Transactions through Ego Network Motif Mining [1.9253333342733674]
本稿では,トークン転送ネットワークからエゴネットワークモチーフを抽出し,ユーザとスマートコントラクト間のトークン転送をキャプチャする手法を提案する。
これらのモチーフを解析することにより,特定のDeFi操作を行うスマートコントラクト手法を効率的に識別できることを示す。
論文 参考訳(メタデータ) (2024-08-22T11:38:59Z) - Maximal Extractable Value Mitigation Approaches in Ethereum and Layer-2 Chains: A Comprehensive Survey [1.2453219864236247]
MEVは、採掘者またはバリデーターが追加の値を抽出するためにトランザクションオーダを操作するときに発生する。
これは、予測不可能と潜在的損失を導入することによってユーザエクスペリエンスに影響を与えるだけでなく、分散化と信頼の根底にある原則を脅かす。
本稿では, プロトコルL1と各種L2ソリューションの両方に適用したMEV緩和技術に関する包括的調査を行う。
論文 参考訳(メタデータ) (2024-07-28T19:51:22Z) - MEV Ecosystem Evolution From Ethereum 1.0 [6.151915040556504]
従来の金融では、市場の非効率性から価値を創出する仲裁提案や、特権的な役割を持つ参加者に対して価値を抽出する前払い提案など、価値を創出する可能性がある。
このような機会は、様々な参加者が金融活動に従事しているDeFiエコシステムで容易に利用することができる。
この調査では、まず、このような機会がいかに豊かになるかを示す。次に、そのような機会を捉えようとする参加者のプロトコルフォローが、ブロックチェーンのパフォーマンスを妨害する恐れがあるかについて議論する。
最後に、すべてのDeFi参加者に公正な市場を提供するために、信頼の欠如と分散化を回復しようとする研究の現状を概観する。
論文 参考訳(メタデータ) (2024-06-19T14:22:26Z) - Remeasuring the Arbitrage and Sandwich Attacks of Maximal Extractable Value in Ethereum [7.381773144616746]
最大抽出可能な価値(MEV)は、ブロックチェーンエコシステムの繁栄を促進する。
収集した最大のデータセット上でMEV活動を特定するための収益性同定アルゴリズムを提案する。
私たちはMEVエコシステムの全体像、プライベートトランザクションアーキテクチャがもたらす影響、バックランニングメカニズムの採用を特徴としています。
論文 参考訳(メタデータ) (2024-05-28T08:17:15Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
ブロックチェーンのような分散型アプローチは、複数のエンティティ間でコンセンサスメカニズムを実装することで、魅力的なソリューションを提供する。
フェデレートラーニング(FL)は、参加者がデータのプライバシを保護しながら、協力的にモデルをトレーニングすることを可能にする。
本稿では,ブロックチェーンのセキュリティ機能とFLのプライバシ保護モデルトレーニング機能の相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-28T07:08:26Z) - A Bargaining-based Approach for Feature Trading in Vertical Federated
Learning [54.51890573369637]
本稿では,垂直的フェデレートラーニング(VFL)において,経済的に効率的な取引を促進するための交渉型特徴取引手法を提案する。
当社のモデルでは,収益ベース最適化の目的を考慮し,パフォーマンスゲインベースの価格設定を取り入れている。
論文 参考訳(メタデータ) (2024-02-23T10:21:07Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - Leveraging Machine Learning for Multichain DeFi Fraud Detection [5.213509776274283]
本稿では,最も大きなチェーンを含むさまざまなチェーンから特徴を抽出するフレームワークを提案し,広範囲なデータセットで評価する。
XGBoostやニューラルネットワークなど、さまざまな機械学習手法を使用して、DeFiと対話する不正アカウントの検出を識別した。
本稿では,新しいDeFi関連機能の導入により,評価結果が大幅に改善されることを実証する。
論文 参考訳(メタデータ) (2023-05-17T15:48:21Z) - Semantic Information Marketing in The Metaverse: A Learning-Based
Contract Theory Framework [68.8725783112254]
仮想サービスプロバイダ(VSP)によるインセンティブのメカニズム設計の問題に対処し,センサデータ販売にIoTデバイスを採用。
帯域幅が限られているため,センサIoTデバイスによる配信データを削減するためにセマンティック抽出アルゴリズムを提案する。
本稿では,新しい反復型契約設計を提案し,マルチエージェント強化学習(MARL)の新たな変種を用いて,モデル付き多次元契約問題の解法を提案する。
論文 参考訳(メタデータ) (2023-02-22T15:52:37Z) - Uniswap Liquidity Provision: An Online Learning Approach [49.145538162253594]
分散取引所(DEX)は、テクノロジーを活用した新しいタイプのマーケットプレイスである。
そのようなDECの1つ、Unixwap v3は、流動性プロバイダが資金のアクティブな価格間隔を指定することで、より効率的に資金を割り当てることを可能にする。
これにより、価格間隔を選択するための最適な戦略を見出すことが問題となる。
我々は、この問題を非確率的な報酬を伴うオンライン学習問題として定式化する。
論文 参考訳(メタデータ) (2023-02-01T17:21:40Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。